

SFA Modernization Partner
United States Department of Education

Student Financial Assistance

EAI Core Architecture

Technical Specifications

(Release 2)

Task Order #54

Deliverable # 54.1.6

September 28, 2001

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE
 EAI TECHNICAL SPECIFICATIONS RELEASE 2

Table of Contents

1 EXECUTIVE SUMMARY ... 5

1.1 PURPOSE .. 5
1.2 APPROACH .. 5
1.3 DESCRIPTION OF SECTIONS.. 5
1.4 SCOPE ... 6
1.5 INTENDED AUDIENCE ... 7
1.6 BUSINESS DRIVERS... 7
1.7 ASSUMPTIONS... 7

2 EAI CORE ARCHITECTURE SYSTEMS AND COMPONENTS OVERVIEW........................ 8
3 INTEGRATION ARCHITECTURE... 9

3.1 INTERFACE DEFINITIONS .. 13
3.2 MAINFRAME LEGACY SYSTEMS... 14

3.2.1 Central Processing System (CPS) EAI System Overview .. 14
3.1.1.1 CPS Messaging Components ... 14
3.1.1.2 MQSeries Provided Adapters... 15
3.1.1.3 CPS Custom Built Adapters ... 15
3.2.1.1 CPS Data Flow and Message Flow Diagrams .. 15
3.1.1.4 CPS MQSeries Programming Sample Source Code.. 17

3.2.2 National Student Loan Data System (NSLDS) EAI System Overview 18
3.2.2.1 NSLDS Messaging Components... 18
3.2.2.2 MQSeries Provided Adapters... 18
3.2.2.3 NSLDS Custom Built Adapters .. 19
3.2.2.4 NSLDS Data Flow and Message Flow Diagrams.. 20
3.2.2.5 NSLDS MQSeries Programming Sample Source code .. 22
3.2.2.6 NSLDS MQSeries OS/390 Trigger Monitor and Custom Cool:Gen Adapters 22

3.3 MID-TIER LEGACY SYSTEMS.. 24
3.3.1 bTrade EAI System Overview .. 24

3.3.1.1 bTrade Messaging Components... 24
3.3.1.2 MQSeries Provided Adapters... 24
3.3.1.3 bTrade Custom Built Adapters... 24
3.3.1.4 bTrade Data Flow and Message Flow Diagrams.. 25
3.3.1.5 bTrade MQSeries Programming Sample Source code .. 26

3.3.2 Direct Loan Servicing System (DLSS) EAI System Overview .. 27
3.3.2.1 DLSS Messaging Components ... 27
3.3.2.2 MQSeries Provided Adapters... 27
3.3.2.3 DLSS Custom Built Adapters ... 27
3.3.2.4 DLSS Data Flow and Message Flow Diagrams .. 28
3.3.2.5 DLSS MQSeries Programming Sample Source Code.. 31

3.3.3 Electronic Campus Based System (eCBS) EAI System Overview....................................... 31
3.3.3.1 eCBS Messaging Components ... 31
3.3.3.2 MQSeries Provided Adapters... 31
3.3.3.3 eCBS Custom Built Adapters ... 31
3.3.3.4 eCBS Data Flow and Message Flow Diagrams .. 32
3.3.3.5 eCBS MQSeries Programming Sample Source Code .. 35

3.3.4 Financial Management System (FMS) EAI System Overview... 36

09/28/01 54 – 54.1.3 2

3.3.4.1 FMS Messaging Components... 36

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE
 EAI TECHNICAL SPECIFICATIONS RELEASE 2

3.3.4.2 MQSeries Provided Adapters... 36
3.3.4.3 FMS Custom Built Adapters .. 36
3.3.4.4 FMS Data Flow and Message Flow Diagrams.. 36
3.3.4.5 FMS MQSeries Programming Sample Source Code ... 39

3.3.5 LO System - Electronic Master Promissory Note (eMPN) EAI System Overview.............. 40
3.3.5.1 LO System - eMPN Messaging Components.. 40
3.3.5.2 MQSeries Provided Adapters... 40
3.3.5.3 LO System - eMPN Custom Built Adapters ... 40
3.3.5.4 LO System - eMPN Data Flow and Message Flow Diagrams....................................... 40
3.3.5.5 LO System – eMPN MQSeries Programming Sample Source Code.............................. 42

3.3.6 LO System - Promissory Note Imaging (P-Note Imaging) EAI System Overview.............. 42
3.3.6.1 LO System - P-Note Imaging Messaging Components .. 42
3.3.6.2 MQSeries Provided Adapters... 43
3.3.6.3 LO System - P-Note Imaging Custom Built Adapters .. 43
3.3.6.4 LO System - P-Note Imaging Data Flow and Message Flow Diagrams 43
3.3.6.5 LO System - P-Note Imaging MQSeries Programming Sample Source Code............... 45

3.3.7 Post-Secondary Education Participants System (PEPS) EAI System Overview 45
3.3.7.1 PEPS Messaging Components ... 45
3.3.7.2 MQSeries Provided Adapters... 45
3.3.7.3 PEPS Custom Built Adapters... 46
3.3.7.4 PEPS Data Flow and Message Flow Diagrams .. 46
3.3.7.5 PEPS MQSeries Programming Sample Source code... 48

3.4 WEBSPHERE APPLICATION SERVER ... 48
3.4.1 EAI WAS Request / Reply Data Flow .. 48
3.4.2 MQ-WebSphere Adapter... 49

4 SFA EAI ARCHITECTURE CUSTOMIZATION... 50
4.1 MQSERIES IMPLEMENTATION AND CONFIGURATIONS FOR THE NON-LEGACY INTEGRATION
RELEASE 1 AND 2 .. 50

4.1.1 MQSeries for WebSphere on Solaris .. 50
4.1.2 EAI Bus Client / Server Configuration and Design .. 51
4.1.3 MQSeries Implementation and Configurations for the Legacy Integration Release 1 and 2 55

4.1.3.1 MQSeries for bTrade on HP-UX ... 55
4.1.3.2 MQSeries for CPS and NSLDS on OS/390 .. 56
4.1.3.3 MQSeries for DLSS on Open VMS ... 59
4.1.3.4 MQSeries for eCBS on Solaris... 59
4.1.3.5 MQSeries for FMS on HP-UX ... 60
4.1.3.6 MQSeries for LO System - eMPN on HP-UX .. 60
4.1.3.7 MQSeries for LO System - P-Note Imaging on Windows NT .. 61
4.1.3.8 MQSeries for PEPS on HP-UX.. 62

5 EXECUTION ARCHITECTURE COMPONENTS.. 62
5.1 MQSERIES MESSAGING CAPABILITIES... 62

5.1.1 Application Programs and Messaging... 63
5.1.2 Queue Managers.. 63
5.1.3 Connecting an Application to a Queue Manager .. 63
5.1.4 Opening a Queue... 63
5.1.5 Putting and Getting Messages ... 64
5.1.6 Transactional Integrity .. 64
5.1.7 Security ... 64
5.1.8 Triggering.. 65

09/28/01 54 – 54.1.3 3

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI CORE ARCHITECTURE
 EAI TECHNICAL SPECIFICATIONS RELEASE 2

5.2 MQSERIES INTEGRATOR CAPABILITIES ... 65
5.3 EXPORTING MESSAGE FLOWS BETWEEN DEVELOPMENT WORKSTATIONS AND MQSI BUILD-
TIME SERVER... 66

5.3.1 Exporting Message Flows ... 66
5.3.2 Importing Message Flows ... 67

5.4 DEPLOYING MQSI CONFIGURATION DATA FROM THE BUILD-TIME SERVER TO THE RUN-TIME
SERVER.. 67

5.4.1 Three types of deployment.. 68
5.4.1.1 Complete deployment... 68
5.4.1.2 Delta deployment ... 68
5.4.1.3 Forced deployment... 68

5.4.2 Stages of Deployment ... 68
5.4.2.1 Stage One of Deployment... 68
5.4.2.2 Stage Two of Deployment .. 69

5.4.3 Deploying and Checking Data In and Out .. 69
5.4.4 Verifying Successful Deployment .. 69
5.4.5 SFA EAI Release 1 and 2 Core Specific Deployment Details.. 70

5.4.5.1 Deployment Cookbook ... 70
5.5 ERROR HANDLING .. 71
5.6 SCALABILITY .. 71
5.7 REDUNDANCY... 72
5.8 LOAD BALANCING.. 73

6 DEVELOPMENT ARCHITECTURE .. 74
6.1 OVERVIEW .. 74
6.2 DESCRIPTION .. 74
6.3 OPERATING SYSTEMS ... 75
6.4 DEVELOPMENT PROCESS .. 75
6.5 MQSI DEVELOPMENT ENVIRONMENT ... 75
6.6 MQSI CONFIGURATION CONSIDERATIONS .. 77
6.7 DEVELOPMENT TOOLS.. 77
6.8 CONFIGURATION MANAGEMENT.. 78

APPENDIX A: MQSERIES SCRIPTS AND PROGRAMS... 79
APPENDIX B: REFERENCE MATERIAL .. 85

09/28/01 54 – 54.1.3 4

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION ONE: INTRODUCTION

1 EXECUTIVE SUMMARY

1.1 PURPOSE
This document provides a comprehensive overview of the Student Financial Assistance (SFA) Technical
Specifications required for Release 1 and 2 of the Enterprise Application Integration (EAI) Core
Architecture. Release 1 and 2 provides legacy system connectivity deemed most critical for the initial
implementation of the EAI Core infrastructure and a technical architecture that meets current and future
implementation requirements for using the SFA EAI Integration architecture.

The document is intended to provide the SFA specific EAI architectural detail information. The EAI
Technical Specification Release 2 deliverable defines the architecture design and services provided by the
EAI Core Architecture to support the Modernization effort of SFA’s Information Technology (IT)
Enterprise for enabling legacy systems to utilize the EAI Bus. The objective of this document is to
provide the information necessary to understand the components comprising the EAI Bus, and the
architectural design for enabling the Release 1 and 2 legacy systems to utilize the services provided by the
enterprise EAI architecture at SFA.

1.2 APPROACH
The following approach was used to develop the EAI Technical Specifications deliverable:

• Review each Release 1 and 2 legacy system from a service and interface perspective to validate the

design of the required EAI components to connect each system to the EAI Bus.
• Review the EAI functional services required for each Release 1 and 2 Legacy System
• Design the EAI Core architecture based on the development of test scenarios that will validate the

MQSeries messaging and transformation architecture to connect each of the Release 1 and 2 Legacy
Systems to the EAI Bus.

1.3 DESCRIPTION OF SECTIONS
This document is divided into the following sections:
• Section 1 – Executive Summary

This section outlines the purpose and guidelines of the document.

• Section 2 – EAI Core Architecture Systems and Component Overview
This section identifies the systems that are a part of the EAI Core Architecture for Release 1 and 2
and identifies the components used.

• Section 3 – Integration Architecture
This section provides an overview of the integration architecture, including the Release 1 and 2
legacy systems, interfaces to the legacy systems, and interfaces to SFA’s Integrated Technical
Architecture (ITA) Internet architecture. Data flow and message flow diagrams are also documented.

• Section 4 – SFA EAI Architecture Customization
This section describes the architecture customizations to the MQSeries Messaging architecture
components utilized for Release 1 and 2 of the EAI Core Architecture.

09/28/01 54 – 54.1.3 5

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION ONE: INTRODUCTION

• Section 5 – Execution Architecture Components

This section describes the standard MQSeries Messaging architecture components utilized for Release
1 and 2 of the EAI Core Architecture.

• Section 6– Development Architecture
This section describes the MQSeries Integrator (MQSI) components utilized for Release 1 and 2 EAI
Core Architecture.

1.4 SCOPE
The EAI Core Architecture effort consists of the installation, design, build, test, and implementation of a
MQSeries integration architecture for the Department of Education, Office of Student Financial
Assistance (SFA) Release 1 and 2 legacy systems. The Release 1 and 2 core MQSeries integration
architecture consists of the following EAI software components:

• MQSeries Messaging
• MQSeries Integrator
• MQ Adapters

Collectively, the implementation of the EAI components and architecture is referred to as the EAI Bus.
The EAI components provide the core architecture to enable SFA applications to utilize a common,
reusable infrastructure for connecting disparate, heterogeneous systems. This document defines the
technical specifications that describe the design and implementation details. The EAI core architecture
provides the EAI components and services to connect the SFA Internet Domain to legacy systems through
an EAI Bus. For Release 1 and 2 the EAI core architecture provides the infrastructure to connect to the
following SFA legacy systems:

• bTrade
• Central Processing System – (CPS)
• Direct Loan Servicing System – (DLSS)
• Electronic Campus Based System – (eCBS)
• Financial Management System – (FMS)
• LO System - Electronic Master Promissory Note – (eMPN)
• LO System - Promissory Note Imaging – (P-Note Imaging)
• National Student Loan Data System – (NSLDS)
• Post-Secondary Education Participants System – (PEPS)

Connections to these Release 1 and 2 legacy systems is provided by MQSeries Messaging as the transport
layer, and MQSeries Integrator for the transformation and routing of message data between systems. On
each legacy system MQ Adapters have been installed and configured to validate the core messaging
infrastructure for connecting to the EAI Bus and sample message flows have been designed and
implemented for each Release 1 and2 legacy system to validate message transformation of data as
required by each system. In addition, MQ Adapters have been designed and implemented to validate
sample functionality representative of each Release 1 and 2 legacy system to verify the functionality of
each system to interface with the MQSeries messaging components to retrieve and put messages
from/onto the EAI Bus.

09/28/01 54 – 54.1.3 6

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION ONE: INTRODUCTION

1.5 INTENDED AUDIENCE
The EAI Core Technical Specifications document is intended for technical application teams who need to
understand the capabilities implemented at the completion of EAI Core Architecture Release 2.

1.6 BUSINESS DRIVERS
The EAI Core Architecture for Release 1 and 2 does not include any application related functionality or
business logic, other than that provided to validate the design, installation and configuration of the MQ
Adapters for each Release 1 and 2 legacy system. Upon completion of the EAI Core Architecture for the
Release 1 and 2 legacy systems application developers will be able to design, develop, and deploy
applications using the services provided by the EAI Core Architecture.

1.7 ASSUMPTIONS
The EAI Core Technical Specifications deliverable is based on the following assumptions:

• No application requirements will be included within this documentation.
• The EAI Core Technical Specifications document will be for SFA specific customized EAI Core

Architecture components.
• There are no specifications to security defined within this documentation, as these are application

specific.
• There are no detailed specifications to performance tuning, as these are application specific based on

message volume and transaction requirements.

09/28/01 54 – 54.1.3 7

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

2 EAI CORE ARCHITECTURE SYSTEMS AND COMPONENTS
OVERVIEW

SFA will provide all necessary development, testing, and production environment hardware including all
required development and production software licenses. The following products have been utilized in the
design, build and test of the Release 1 and 2 EAI Core Architecture:

• DB2 database v6.1 has been installed on the EAI Bus Sun Servers and the MQSI NT Servers. This

product is included with the full installation of MQSI and does not require an additional license as
long as it is only used for MQSI.

• WebSphere Application Server v3.5 utilized on the WAS Sun boxes in development and test.

• MQSeries v5.2 has been installed on all systems except for DLSS, which has MQSeries v2.2.1.1
installed.

• MQSeries Integrator v2.0.1 has been installed on the EAI Bus Sun Servers, the MQSI NT Servers and
the MQSI development workstations.

The versions of these products were chosen based on the analysis of the five Legacy Systems used for the
EAI Core Architecture Release 1 and the four Legacy Systems used for the EAI Core Architecture
Release 2. It had been determined that each Legacy System had the required prerequisites necessary to
install the software versions listed above. These software versions were the most currently supported
software products from IBM at the time of the analysis.

The following table summarizes the Release 1and 2 legacy systems at SFA and their environments and
the EAI software components installed on each system.

System
Name

Hardware
Platform

Operating
System

Platform

Database
/ Software

EAI Components

bTrade • HP • HP-UX 11.x • Oracle
RDBMS

• Java

• MQSeries Messaging V5.2 Server

CPS • IBM 9672
R35

• OS/390 V2.8
(Put Level
9907)

• DB2 V5.1
• COBOL390

2.1.0
(HCKVB00)

• MQSeries Messaging V5.2 Server
• MQ CICS Bridge Adapter
• DPL Bridge
• Trigger Monitor
• MQ Batch Adapter

DLSS • Dec Alpha • Open VMS • Oracle RDB
• COBOL
• C++

• MQSeries Messaging V2.2.1.1 Server

ECBS • Sun • Solaris 2.6 • Oracle
RDBMS

• MQSeries Messaging V5.2 Server

FMS • HP • HP-UX 11 • Oracle
RDBMS

• MQSeries Messaging V5.2 Server

LO System -
eMPN

• HP • HP-UX 11.x • Informix • MQSeries Messaging V5.2 Server

LO System -
P-Note

• Compaq • NT 4.0 • Informix • MQSeries Messaging V5.2 Server

09/28/01 54 – 54.1.3 8

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

System
Name

Hardware
Platform

Operating
System

Database
/ Software

EAI Components

Platform
Imaging
NSLDS • IBM 9672

R85
• OS/390 V2.8

(Put Level
9907)

• DB2 V5.1
• COBOL390

2.1.0
(HCKVB00)

• MQSeries Messaging V5.2 Server
• MQ CICS Bridge Adapter
• DPL Bridge
• Trigger Monitor
• MQ Batch Adapter

NSLDS Web
Server

• Compaq • NT 4.0 • Cool:Gen
IDE

• MQSeries Messaging V5.2 Server

PEPS • HP • HP-UX 10.x • Oracle
RDBMS

• Oracle Forms
• COBOL
• C++

• MQSeries Messaging V5.2 Server

PEPS –
Development
(CBMI
facility)

• HP • HP-UX 10.x • Oracle
RDBMS

• Oracle Forms
• COBOL
• C++

• MQSeries Messaging V5.2 Server

SU35E3 • Sun • Solaris 2.7 • DB2
(Included
with MQSI)

• MQSeries Integrator V2.0.1
• MQSeries Messaging V5.2 Server

SU35E5 • Sun • Solaris 2.6 • Websphere
V3.5

• MQSeries Messaging V5.2 Server

SU35E14 • Sun • Solaris 2.7 • DB2
(Included
with MQSI)

• MQSeries Integrator V2.0.1
• MQSeries Messaging V5.2 Server

SU35E16 • Sun • Solaris 2.7 • DB2
(Included
with MQSI)

• MQSeries Integrator V2.0.1
• MQSeries Messaging V5.1 Server

(Included with MQSI)
SU35E17 • Sun • Solaris 2.7 • DB2

(Included
with MQSI)

• MQSeries Integrator V2.0.1
• MQSeries Messaging V5.1 Server

(Included with MQSI)
SFANT006 • Compaq • NT 4.0 • DB2

(Included
with MQSI)

• MQSeries Integrator V2.0.1
• MQSeries Messaging V5.1 Server

(Included with MQSI)
Rational
Server

• Compaq • NT 4.0 • DB2
(Included
with MQSI)

• MQSeries Integrator V2.0.1
• MQSeries Messaging V5.1 Server

(Included with MQSI)
Development
Workstations
(3) at
Accenture

• Compaq • NT 4.0 • DB2
(Included
with MQSI)

• MQSeries Integrator V2.0.1
• MQSeries Messaging V5.1 Server

(Included with MQSI)

3 INTEGRATION ARCHITECTURE
This section provides an overview of the integration architecture, including the Release 1 and 2 legacy
systems, interfaces to the legacy systems, and interfaces to SFA’s Integrated Technical Architecture
09/28/01 54 – 54.1.3 9

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

(ITA) Internet architecture. Additionally, this section provides descriptions of the supporting applications
used to satisfy the design requirements for site development and operation.

The SFA Enterprise Application Integration Core Architecture consists of the following four primary
areas:
• Legacy Systems – Mainframe and Mid-Tier
• Internet – WebSphere Application Server
• EAI Bus Servers
• EAI Development Workstations

The following diagrams provide a high level view of the EAI Architecture for the Production,
Development, and Test environments at SFA.

09/28/01 54 – 54.1.3 10

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

EAI BUS Infrastructure
CPS

 EAI BUS Architecture Overview (Production)

EAI BUS Servers Clusters

MQSeries Server

MQSeries
Server

NSLDS

bTrade

MQSeries
Server

MQSeries
Server

QMgrE

QMgrD

DLSS

MQSeries
Server

QMgrF

eCBS

MQSeries
Server

QMgrG
QMgrB

MQSeries Server

QMgrA

Websphere Application Server

Websphere Application Server

 Oracle

Web Server

Web Server

Adapter

Adapter

MQSI
Broker 2

Applications
QMgrC

MQSI
Broker 1

DB2

Applications

Applications

Applications

Applications

Applications

Applications

MQSeries
Server

QMgrW

MQSeries
Server

QMgrX

Adapter

Adapter

Adapter

CICS
DPL

Bridge

CICS
DPL

Bridge

DB2

D
ep

lo
ym

en
t

MQSI Production Migration NT Server

Config-
uration

Mgr

FMS

MQSeries
Server

QMgrH
Applications

Adapter

PEPS

MQSeries
Server

QMgrI
Applications

Adapter

LO System-eMPN

MQSeries
Server

QMgrJ
Applications

Adapter

P-Note Imaging

MQSeries
Server

QMgrK
Applications

Adapter

 Socket

09/28/01 54 – 54.1.3 11

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

EAI BUS Infrastructure
CPS

 EAI BUS Architecture Overview (Development)

EAI BUS Server Cluster

MQSeries
Server

NSLDS

bTrade

MQSeries
Server

MQSeries
Server

QMgrE

QMgrD

DLSS

MQSeries
Server

QMgrF

eCBS

MQSeries
Server

QMgrG

MQSeries Server

QMgrA

Websphere Application Server

 Oracle

Web Server

Adapter

Applications
QMgrC

MQSI
Broker 1

DB2

Applications

Applications

Applications

Applications

Applications

MQSeries
Server

QMgrX

Adapter

Adapter

Adapter

CICS
DPL

Bridge

CICS
DPL

Bridge

FMS

MQSeries
Server

QMgrH
Applications

Adapter

PEPS

MQSeries
Server

QMgrI
Applications

Adapter

LO System-eMPN

MQSeries
Server

QMgrJ
Applications

Adapter

P-Note Imaging

MQSeries
Server

QMgrK
Applications

Adapter

 Socket

Config-
uration

Mgr

MQSI Development NT Server

D
ep

lo
ym

en
t

NT Client/MQSI Control Center

NT Client/ MQSI Control Center

09/28/01 54 – 54.1.3 12

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

EAI BUS Infrastructure
CPS

 EAI BUS Architecture Overview (Test)

EAI BUS Server Cluster

MQSeries
Server

NSLDS

bTrade

MQSeries
Server

MQSeries
Server

QMgrE

QMgrD

DLSS

MQSeries
Server

QMgrF

eCBS

MQSeries
Server

QMgrG

MQSeries Server

QMgrA

Websphere Application Server

 Oracle

Web Server

Adapter

Applications
QMgrC

MQSI
Broker 1

DB2

Applications

Applications

Applications

Applications

Applications

MQSeries
Server

QMgrX

Adapter

Adapter

Adapter

CICS
DPL

Bridge

CICS
DPL

Bridge

FMS

MQSeries
Server

QMgrH
Applications

Adapter

PEPS

MQSeries
Server

QMgrI
Applications

Adapter

LO System-eMPN

MQSeries
Server

QMgrJ
Applications

Adapter

P-Note Imaging

MQSeries
Server

QMgrK
Applications

Adapter

 Socket

Config-
uration

Mgr

MQSI Development NT Server

D
ep

lo
ym

en
t

NT Client/MQSI Control Center

NT Client/ MQSI Control Center

Each of the main areas of the architecture is described in the following sections.

3.1 INTERFACE DEFINITIONS
Existing and future SFA applications and business capabilities will rely on the EAI Bus to retrieve and
send data to and from legacy systems. This section provides the interface definitions and process for
using the EAI Bus to connect to each of the Release 1 and 2 legacy systems. For each Release 1 and 2

09/28/01 54 – 54.1.3 13

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

legacy system a diagram depicting the architecture components, message flow and EAI components
(wrappers, bridges, connectors and adapters) will be documented.

3.2 MAINFRAME LEGACY SYSTEMS
The Release 1 Mainframe systems for the EAI Core include CPS and NSLDS. On each of these systems
the following EAI components have been installed:

• MQSeries Messaging
• MQ CICS Bridge Adapter
• MQ DPL Adapter
• MQ Batch Adapter
• Trigger Monitor
• Custom Developed MQ Adapters

Each of these components provides the core infrastructure for enabling SFA applications to connect to the
EAI bus. The choice and use of which adapter is dependent upon the application functionality
requirements. The list of adapters developed for Release 1 and 2 for the mainframe systems are defined
in Appendix A.

During the due diligence phase of EAI Core Release 1, it was determined that the software prerequisites
to use the MQSeries CICS 3270 Bridge were not met for NSLDS nor CPS. Based on the findings, the
MQSeries CICS 3270 Bridge has been excluded from the SFA EAI Core. The two prerequisites
necessary for the installation of the MQSeries CICS 3270 Bridge are listed below:

• MQSeries for MVS/ESA Version 1.2 with APAR PQ13387
• CICS Transaction Server for OS/390 Release 1 with APARs PQ13011 and PQ13012

3.2.1 Central Processing System (CPS) EAI System Overview
The CPS system executes in a CICS (Customer Information Control System) environment. CPS provides
the functionality to execute CICS developed transactions to query/request data on the system. A sample
CPS CICS transaction has been identified for validation of the EAI Bus connectivity to the CPS legacy
system. A request will be sent from the source server via MQSeries, transformed using MQSI, and sent
to CPS for execution. The results of the transaction will be sent back to the calling source and
displayed/written to a file. This test will validate the installation and configuration of EAI connectivity
for CPS. The required EAI components, MQ Adapters, MQSeries CICS Bridge adapter and trigger
monitor will be installed and configured on the CPS system to validate the functionality.

The pilot application supports the Loan Application Status functionality. A Request/Reply message type
will be used to test the integration of the pilot application. A message will be sent from the source server
and transported through the EAI Bus via MQSeries. The message data will be transformed in the EAI
Bus using the MQSI software into the expected message data format of the target CICS transaction. The
transformed message data will be routed to the CPS mainframe and retrieved for execution. The results
of the request will be sent back to the source server for display.

3.1.1.1 CPS Messaging Components
The following messaging components are used to support the CPS sample transaction for the EAI Core
Architecture Release 1. Also, the additional adapters installed and configured are described too.

09/28/01 54 – 54.1.3 14

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

• The MQSeries with the DPL (Distributed Program Link) adapter supports the integration to CICS

programs (applications) which do not us any terminal related CICS commands. These CICS
programs support communication through the CICS COMMAREA.

• The MQSeries CICS Bridge adapter supports the connectivity of MQSeries Queue Managers to CICS
regions.

• The MQSeries OS/390 Batch Trigger Monitor and two custom-built batch adapters have been
installed and configured as part of the core architecture.

The following section defines the EAI components and technical specifications for the design and
development of the CPS sample transaction.

3.1.1.2 MQSeries Provided Adapters
The MQSeries CICS Bridge – DPL adapter was an out-of-the box adapter used by the CPS system.

3.1.1.3 CPS Custom Built Adapters
No custom built adapters are required for CPS as part of the Enterprise Application Integration Core
Architecture Release 1.

3.2.1.1 CPS Data Flow and Message Flow Diagrams

The figure below describes the message flow through the CICS DPL Bridge Adapter.

CPS
MQSI

message
flow

DB2

CICS Bridge
DPL Task

CKBP/
CSQCBP00

CICS Bridge
Monitor
CKBR/

CSQCBR00

SYSTEM.CLUSTER.
TRANSMIT.QUEUE EAI.FROM.WAS.

REQAPPSTATUS

SU35E16 or SU35E17
WAS.FROM.EAI.REPLYAPPSTATUSWAS.FROM.EAI.REPLYAPPSTATUS

QL

QL

(1) (2) (3)

(11)

(4)

(7)

(5)

(10)

CPS
Request

CPT1.CICSDEV1.BRIDGE.QUEUE

Qmgr: CPT1

QL

Qmgr:
SU35E5

Qmgr:
SU35E16/
SU35E17

EAI CPS CICS DPL Bridge Adapter
Data Flow

CPS OS/390
Environment

Request
Application

Status

WAS -Websphere
Application Server EAI BUS SERVER

EAI.TO.CPS.
REQAPPSTATUS

(8)

(9)

(6)

QR

QR

(12)

QR

QR

09/28/01 54 – 54.1.3 15

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

The flow of a MQSeries Request type message through the EAI CPS DPL Bridge Adapter Request
Design is as follows:

1) A CPS MQSeries Request type message is put to the Cluster Queue

EAI.FROM.WAS.REQAPPSTATUS from the WAS box.

2) The MQSeries Queue Manager (SU35E5) on the WAS moves the message to the Local Queue
EAI.FROM.WAS.REQAPPSTATUS.

3) The message is pulled from the EAI.FROM.WAS.REQAPPSTATUS and processed through the CPS
MQSI Message Flow and data transformation.

4) The output message from the CPS MQSI Message Flow is put to the Remote Queue
EAI.TO.CPS.REQAPPSTATUS.

5) The MQSeries Queue Manager (SU35E16/SU35E17) on the EAI Bus server moves the message to
the Local Queue CPT1.CICSDEV1.BRIDGE.QUEUE.

6) The MQSeries CICS Bridge Monitor (CKBR/CSQCBR00) monitors the
CPT1.CICSDEV1.BRIDGE.QUEUE to see if there are any messages to be processed. If a message
has arrived, the CICS Bridge Monitor starts the CICS Bridge DPL Task (CKBP/CSQCBP00).

7) The CICS Bridge DPL Task will get a message from the CPT1.CICSDEV1.BRIDGE.QUEUE.

8) The CICS Bridge DPL Task will do a Distributed Program Link(DPL) to the CPS pilot application,
passing the message in the CICS COMMAREA.

9) The CPS pilot application will return the response data in the CICS COMMAREA when finished.

10) The CICS Bridge DPL Task will put the reply message to the transmission Queue for SU35E16 or
SU35E17.

11) The MQSeries Queue Manager (CPT1) on the CPST LPAR moves the message to the Remote Queue
WAS.FROM.EAI.REPLYAPPSTATUS.

12) The MQSeries Queue Manager (SU35E16/SU35E17) on the EAI Bus server moves the message to
the Local Queue WAS.FROM.EAI.REPLYAPPSTATUS.

09/28/01 54 – 54.1.3 16

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

CPS Message Flow
Node Type Description/Function
CPS Aplcnt Request MQInput Gets message from input queue EAI.FROM.WAS.REQAPPSTATUS
MQOutput1 MQOutput Puts message to queue CORE.CPS.BIGERROR
Trace on Input Trace Used to trace flow
Verify SSN Filter Checks if SSN <> ‘XXXXXXXXX’

If True goto Build CPS Msg
If False goto Build Error Msg
If Failure goto CPS Invalid SSN
If Unknown goto Unknown Filter Error

Build CPS Msg Compute Append Program name, SSN and NameID to Message
Build Error Msg Compute Create error message
CPS Invalid SSN MQOutput Puts message to CORE.CPS.FAILURE queue
Unknown Filter Error MQOutput Puts message to CORE.CPS.UNKNOWN queue
Trace1 Trace Traces flow
Error Reply MQReply Sends response to the originator of the message
CPS Queue MQOutput Puts message to EAI.TO.CPS.REQAPPSTATUS queue
DataInsert1 DataInsert Database node that allows insertion to a ODBC data source

3.1.1.4 CPS MQSeries Programming Sample Source Code
There are sample MQSeries programs that can be used as templates. The samples are provided with the
product and have been installed within the MQM.V5R2M0.* libraries in the CPS TSO environment and
can be used as reference for future EAI application enablement on the CPS system.

09/28/01 54 – 54.1.3 17

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

3.2.2 National Student Loan Data System (NSLDS) EAI System Overview
The NSLDS Release 1 EAI Core Architecture provides two distinct EAI architecture components, a batch
process and a CICS Cool:Gen Transaction process. The NSLDS system executes in a batch TSO (time
sharing option) environment. In addition, the NSLDS system also has CICS applications built using the
Cool:Gen development environment tool. For the NSLDS system, two sample functions will be
validated, the execution of a batch program and the execution of a transaction. A request will be sent to
the NSLDS system to execute a sample batch program, which will validate the installation and
configuration of the required EAI components to execute batch programs on the mainframe system.
These components include the MQ Batch Adapter and the trigger monitor. For the NSLDS Cool:Gen
transaction, a request will be sent via MQSeries from the NSLDS web server to the NSLDS mainframe
for execution. The results of the request will be sent back to the calling source and displayed on the
browser. This test will require the design and development of Cool:Gen MQ Adapters.

3.2.2.1 NSLDS Messaging Components
The following messaging components are used to support the sample application for the Enterprise
Application Integration Core Architecture Release 1. Additional custom adapters that were installed and
configured are also described.

• The MQSeries CICS Bridge with the DPL (Distributed Program Link) adapter cannot be used for any

NSLDS CICS applications since it was developed with the Cool:Gen product, but it was installed as
part of the core architecture.

• The Cool:Gen product used on NSLDS provides a tool to generate the adapter components required
to provide integration to the CICS programs (in Cool:Gen terms; servers).

• The MQSeries CICS adapter supports the connectivity of MQSeries Queue Managers to CICS
regions.

• The MQSeries OS/390 Batch Trigger Monitor and two custom-built batch adapters support an
NSLDS batch file transfer from/to other systems.

A Request/Reply message type will be used to test the integration of the sample functionality. The
adapters support Request/Reply message types for the sample application to pull data from NSLDS and
provide the response back to the EAI Bus.

The following two sections define the NSLDS architecture for the NSLDS batch program architecture and
message flow/processing and the architecture and message flow/processing for the CICS Cool:gen
transaction.

3.2.2.2 MQSeries Provided Adapters
The following sections define the EAI components for the NSLDS Batch Process.

NSLDS MQSeries CICS Adapter
The MQSeries CICS adapter is installed and configured within the parameters of CICS regions. The
MQSeries NSLDS CICS Adapter is not functional for Release 1, per the reasons defined in Section 3.2.

The MQSeries OS/390 Trigger Monitor is an out-of-the-box adapter. It is described below and is used as
part of the custom adapter test flow. The figure below describes the message flow through the MQSeries
OS/390 Trigger Monitor.

09/28/01 54 – 54.1.3 18

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

3.2.2.3 NSLDS Custom Built Adapters
Custom batch adapters were built to validate the NSLDS batch EAI Core functionality. These adapters
were utilized to process receipt of a file on the NSLDS system, execute a batch process, and read the
output of the batch file, sending the results back to the calling source application. The batch adapters are
defined in Appendix A. The source code for the NSLDS MQ adapters is stored in the ClearCase
repository.

09/28/01 54 – 54.1.3 19

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

3.2.2.4 NSLDS Data Flow and Message Flow Diagrams

NSLDS
MQSI

message
flow

NSLDS
Batch In
Adapter

OS/390 Batch
MQSeries

Trigger
MonitorEAI.FROM.WAS.

REQPELL

SU35E16 or SU35E17WAS.FROM.EAI.REPLYPELL
WAS.FROM.EAI.REPLYPELL

QL

QL

(1) (2) (3)
(4)

(5)

(11)

NSLDS
Request

NSLDS.FROM.EAI.REQPELL

Qmgr: NTT1

QL

Qmgr:
SU35E5

Qmgr:
SU35E16/
SU35E17

EAI NSLDS Data Flow

NSLDS OS/390
Environment

WAS -Websphere
Application Server EAI BUS SERVER

EAI.TO.NSLDS.
REQPELL

(9)
(10)

(6)

QR

QR

QL
NSLDS.BATCH.INIT

SYSTEM.CLUSTER.
TRANSMIT.QUEUE

NSLDS
Batch Out
Adapter

NSLDS
PELL
File

(6)

MQ
Control

File

NSLDS
Load PELL
Data Job

(7)

(7)

(8)
NSLDS

Error File

QR

QL

The flow of a MQSeries Request type message through the EAI System is as follows:

1) A MQSeries Request type message is put to the Cluster Queue EAI.FROM.WAS.REQPELL from the

WAS box.

2) The MQSeries Queue Manager (SU35E5) on the WAS moves the message to the Local Queue
EAI.FROM.WAS.REQPELL. The message is pulled from the EAI.FROM.WAS.REQPELL and
processed through the NSLDS – Pell MQSI Message Flow.

3) The output message from the MQSI Message Flow is put to the Remote Queue
EAI.TO.NSLDS.REQPELL. The MQSeries Queue Manager (SU35E16/SU35E17) on the EAI Bus
server moves the message to the Local Queue NSLDS.FROM.EAI.REQPELL and based on the
attributes set up in the queue, the MQSeries Queue Manager (NTT1) puts a trigger message on the
NSLDS.BATCH.INIT

4) The OS/390 Batch MQSeries Trigger Monitor application pulls the trigger message on the
NSLDS.BATCH.INIT queue.

5) The MQSeries Trigger Monitor application starts the NSLDS Batch In Adapter program.

6) The NSLDS Batch In Adapter program pulls the messages from the queue. It then creates the NSLDS
PELL File and the MQ Control File.

09/28/01 54 – 54.1.3 20

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

7) Then the NSLDS Load Pell Data job will be started via CA7 to process the NSLDS PELL Fil. The

file output from this job will be the NSLDS Error file.

8) The last step in the NSLDS Load Pell Data job will execute the NSLDS Batch Out Adapter.

9) The NSLDS Batch Out Adapter will read the MQ Control file (to know where to send the reply to)
and push the NSLDS Error file into the transmission queue for SU35E16 or SU35E17.

10) The message is moved to the queue WAS.FROM.EAI.REPLYPELL on the EAI bus.

11) The MQSeries Queue Manager on the EAI bus moves the message to
WAS.FROM.EAI.REPLYPELL.

NSLDS Message Flow

Node Type Description/Function
Input to NSLDS MQInput Gets message from the input queue – EAI.FROM.WAS
Trace1 Trace Trace flow
Filter Input Filter Checks if Input is a Control Record or a Data Record.

If Data Record – go to Format the Data Record
If Control Record – go to Format the Control Record

Format the Control Record Compute Formats the record
Format the Data Record Compute Formats the record
Send to Output MQOutput Puts message to EAI.TO.NSLDS queue
Trace Ctrl Rec Trace Traces output flow of Trace Record
Trace Data Rec Trace Traces output flow of Trace Data Record

09/28/01 54 – 54.1.3 21

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

3.2.2.5 NSLDS MQSeries Programming Sample Source code
There are sample MQSeries programs that can be used as templates. The samples are provided with the
product and have been installed within the MQM.V5R2M0.* library in the CPS TSO environment and
can be used as reference for future EAI application enablement on the NSLDS system.

3.2.2.6 NSLDS MQSeries OS/390 Trigger Monitor and Custom Cool:Gen Adapters
The communications features available with COOL:Gen for connectivity to the IBM Mainframe are as
follows:
• With the use of Comm Bridge (TCP/IP or SNA LU6.2)
• Encina to CICS via DPL.
• IBM’s MQSeries.
• DCE

The NSLDS Transaction functionality requires the licensing and use of the Cool:Gen development tool
suite and a run-time license to execute the Cool:Gen application, on both the source server and the
NSLDS mainframe. The Cool:Gen development tools allow the user to develop the Cool:Gen transaction
and the required interface component to MQSeries, on both the source and target server. This developed
Cool:Gen MQ component is required to provide the interface to the Cool:Gen application, on the source
server and the Cool:Gen Transaction program on the target system. Any future SFA EAI application
development which utilizes Cool:Gen will require the Cool:Gen development tool suite as well as the
Cool:Gen run-time license to execute the Cool:Gen application.

The pre-requisites for developing EAI applications to interface with Cool:Gen must first be identified and
installed/configured for each server which requires this functionality. The version of Cool:Gen,
development and run-time are dependent upon the hardware and software platforms defined as part of the
development and production environments.

09/28/01 54 – 54.1.3 22

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

DB2

EAI.TO.NSLDS.WB16 EAI.TO.NSLDS.WB16

NSLDS.TO.EAI.REPLYWB16NSLDS.TO.EAI.REPLYWB16NSLDS.TO.EAI.REPLYWB16

QL

QR

QR

(1) (2)

(8)

(3)

(6)

(4)

(7)

NSLDS
COOL:

Gen
COM
Proxy

EAI.TO.NSLDS.WB16

Qmgr: NTT1

QL

Qmgr:
T048DEV1

Qmgr:
SU35E16/
SU35E17

EAI NSLDS COOL:GEN
 Data Flow

NSLDS OS/390
Environment

MS Internet Information
Server EAI BUS SERVER

(5)

QR

QR

(9)

COOL:GEN
 TDC

(TITD)

CICS CKTI

CICSNSLD

WB16

NTT1.CICSDEVT.INITQ

(10)

1) A request message is put to the Remote Queue EAI.TO.NSLDS.WB16.
2) The message is routed through the EAI BUS Server – QMgr (SU35E16 or SU35E17) using the

EAI.TO.NSLDS.WB16 queue.
3) The COOL:Gen request message arrived in the EAI.TO.NSLDS.WB16 queue on NSLDS OS/390

System QMgr (NTT1). The EAI.TO.NSLDS.WB16 queue is defined and set for triggering.
4) On every message arrival, Qmgr NTT1 creates a trigger message based on the information defined on

the PROCESS definition and puts it on the NTT1.CICSDEVT.INITQ object.
5) The CICS trigger monitor in the CICS region CICSNSLD gets the trigger message, examines its

contents and start transaction COOL:Gen Transaction Dispatcher for CICS (TDC), passing the entire
trigger message to the program.

6) The TDC, which opens the application queue, gets the request message.
7) The program WB1612DS is invoked which accesses the DB2 databases and formats the reply to be

sent back to the COM Proxy. Communication between MQSeries and CICS program WB1612DS is
done through the CICS COMMAREA.

8) The formatted reply message is PUT into the NSLDS.TO.EAI.REPLYWB16 queue.
9) The message is routed through the EAI BUS Server – QMgr (SU35E16 or SU35E17) using the

NSLDS.TO.EAI.REPLYWB16 queue.
10) The reply message arrives at the QMgr – T048DEV1 on the NSLDS web server. COOL:Gen

COM Proxy gets the reply message from the queue and displays the result.

09/28/01 54 – 54.1.3 23

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

3.3 MID-TIER LEGACY SYSTEMS
The Mid-Tier Legacy Systems for Release 1 and 2 of the EAI Core architecture that have been identified
to build interfaces into the EAI Bus are bTrade, DLSS, eCBS, FMS, LO System – eMPN, LO System –
P-Note Imaging, and PEPS.

3.3.1 bTrade EAI System Overview
The bTrade system uses proprietary software that has an API (Application Programming Interface) that
will be used in conjunction with a custom developed MQSeries adapter as a sample application for the
test of the interface to the EAI Bus. The EAI Core team will develop a function to validate the ability to
extract mailbox data from a specified test mailbox on the bTrade server.

3.3.1.1 bTrade Messaging Components
The following messaging components are used to support the bTrade sample application for the Release 1
Enterprise Application Integration Core Architecture. A custom adapter was created for the bTrade
system. The sample application used to interface to MQSeries supports the Request for Mailbox Data
functionality. A Request/Reply message type will be used to test the integration of the sample application.
The adapter supports a Request/Reply message type for the sample application to pull data from a bTrade
mailbox and provide the response back to the EAI Bus.

3.3.1.2 MQSeries Provided Adapters
No MQSeries provided adapters have been identified as part of the Release 1 Enterprise Application
Integration Core Architecture. A custom developed MQ Adapter was required for the validation of the
bTrade EAI Core sample functionality. The description and function of this adapter is defined in Section
3.3.1.3.

3.3.1.3 bTrade Custom Built Adapters
The figure below describes a Request/Reply type message flow through the bTrade custom adapter. This
adapter is written in Java. The adapter provides the functionality to retrieve a message from an input
queue on the bTrade system, call the bTrade Connector API to retrieve data from a specified mailbox on
the bTrade server, and put the results into an output queue to be sent to the source server. The adapter is
defined in Appendix A. The source code for the bTrade custom MQ adapter is stored in the ClearCase
repository.

09/28/01 54 – 54.1.3 24

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

3.3.1.4 bTrade Data Flow and Message Flow Diagrams

bTrade
MQSI

message
flow

bTrade
Mailbox

bTrade MQ
Wrapper/
Adapter:

 Get Mail
Function

MQSeries
Trigger
Monitor

EAI.FROM.WAS.
GETMAIL

SU35E16 or SU35E17WAS.FROM.EAI.REPLYMAIL
WAS.FROM.EAI.REPLYMAIL

QL

QL

(1) (2) (3) (4)

(7)

(5)

(10)

bTrade
Request

BTRADE.FROM.EAI.GETMAIL

Qmgr: HPDEV1

QL

Qmgr:
SU35E5

Qmgr:
SU35E16/
SU35E17

EAI bTrade Data Flow

bTrade HP-UX
Environment

bTrade
Connector

API

WAS -Websphere
Application Server EAI BUS SERVER

EAI.TO.BTRADE.
GETMAIL

(8)

(9)

(6)

QR

QR

QL
BTRADE.INIT

SYSTEM.CLUSTER.TRANSMIT.
QUEUE

QR

QL

(12) (11)

The flow of a MQSeries Request type message through the EAI bTrade Request Design is as follows:

1) A bTrade MQSeries Request type message is put to the Cluster Queue EAI.FROM.WAS.GETMAIL

from the WAS box.

2) The MQSeries Queue Manager (SU35E5) on the WAS moves the message to the Local Queue
EAI.FROM.WAS.GETMAIL.

3) The message is pulled from the EAI.FROM.WAS.GETMAIL and processed through the bTrade
MQSI Message Flow.

4) The output message from the bTrade MQSI Message Flow is put to the Remote Queue
EAI.TO.BTRADE.GETMAIL.

5) The MQSeries Queue Manager (SU35E16/SU35E17) on the EAI Bus server moves the message to
the Local Queue BTRADE.FROM.EAI.GETMAIL and based on the attributes set up in the queue,
the MQSeries Queue Manager (HPDEV1) on bTrade puts a trigger message on an initiation queue:
BTRADE.INIT.

09/28/01 54 – 54.1.3 25

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

6) The MQSeries Trigger Monitor application pulls the trigger message on the BTRADE.INIT.

7) The MQSeries Trigger Monitor application starts the bTrade MQ Wrapper/Adapter application.

8) The bTrade MQ Wrapper/Adapter pulls the message from the BTRADE.FROM.EAI.GETMAIL.

9) The bTrade MQ Wrapper/Adapter application calls the bTrade Connector API to pull data from a
bTrade mailbox and pass back the file/message retrieved.

10) The bTrade MQ Wrapper/Adapter puts the bTrade file/message into the Transmission Queue for
SU35E16 or SU35E17.

11) The MQSeries Queue Manager (HPDEV1) on bTrade moves the reply message to the Remote Queue
WAS.FROM.EAI.REPLYMAIL.

12) The MQSeries Queue Manager (SU35E16/SU35E17) on the EAI Bus server moves the reply message
to the Local Queue WAS.FROM.EAI.REPLYMAIL.

bTrade Message Flow
Node Type Description/Function
Input Message Queue From Was MQInput Gets message from the input queue – EAI.FROM.WAS.GETMAIL
Trace1 Trace Trace flow
Determine Request Type Filter Checks if RequestType = ‘1’ , if true goes to Get Mail

 If false go to Put Mail
Put Mail Compute Sets request value = 2, connectorname, and data.
Output Queue to BTRADE MQOutput Puts message to EAI.TO.BTRADE.GETMAIL queue
Output Trace Trace Traces output flow
Get Mail Compute Sets request value =1 and connectorname

3.3.1.5 bTrade MQSeries Programming Sample Source code
There are sample MQSeries programs that can be used as templates. The samples are provided with MQ
Series Messaging and have been installed on the bTrade server. The sample programs can be found in
/home/mqm/btrade/.

09/28/01 54 – 54.1.3 26

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

3.3.2 Direct Loan Servicing System (DLSS) EAI System Overview
The DLSS system executes in batch type environment. A custom MQSeries adapter will be built to allow
the DLSS application to process with no application modifications required.

3.3.2.1 DLSS Messaging Components
A custom built adapter is required to support the DLSS Loan application used for the EAI Core
Architecture Release 1. A Request/Reply message type will be used to test the integration of the pilot
application. The adapter supports a Request/Reply message type for the pilot application to pull data from
DLSS and provide the response back to the EAI Bus.

3.3.2.2 MQSeries Provided Adapters
No MQSeries provided Adapters are available to validate the sample representative functionality for the
DLSS system as part of the Enterprise Application Integration Core Architecture Release 1.

3.3.2.3 DLSS Custom Built Adapters
Two adapters were created for the DLSS system. The first adapter gets messages from a queue and writes
it to a file and the second adapter reads data from a file and puts the message to a queue.

09/28/01 54 – 54.1.3 27

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

3.3.2.4 DLSS Data Flow and Message Flow Diagrams

DLSS Batch Adapter

Loan
MQSI

message
flow

Flat
File

MQSeries
Adapter

MQSeries
Trigger
Monitor

WAS.TO.EAI.LOAN EAI.FROM.WAS.
LOAN

DLSS.TO.EAI.RESPONSELOAN
EAI.FROM.DLSS.RESPONSELOANWAS.FROM.EAI.RESPONSELOAN

QL

QL

QR

QR

(1) (2) (3)

(12)
(7)

(4)

(11)

Loan
Info

Request
DLSS.FROM.EAI.LOAN

Qmgr: CRDEV2

QL

Qmgr:
SU35E5

Qmgr:
SU35E16/
SU35E17

EAI DLSS Data Flow

Compaq Alpha
OpenVMS

CRDEV2/DLSS

Loan
Program

WAS -Websphere
Application Server EAI BUS SERVER

EAI.TO.DLSS.
LOAN

(8)

(10)

QR

QL

(9)

DLSS.INIT

(5)(6)

Flat
File

The flow of a MQSeries Request type message through the EAI System is as follows:

1) A MQSeries Request type message is put to the Cluster Queue EAI.FROM.WAS.LOAN from the

WAS box.

2) The MQSeries Queue Manager (SU35E5) on the WAS moves the message to the Local Queue
EAI.FROM.WAS.LOAN. The message is pulled from the EAI.FROM.WAS.LOAN and processed
through the DLSS – Loan MQSI Message Flow.

3) The output message from the MQSI Message Flow is put to the Remote Queue EAI.TO.DLSS.LOAN

4) The MQSeries Queue Manager (SU35E16/SU35E17) on the EAI Bus server moves the message to
the Local Queue DLSS.FROM.EAI.LOAN and based on the attributes set up in the queue, the
MQSeries Queue Manager (CRDEV2) puts a trigger message on the DLSS.INIT

5) The MQSeries Trigger Monitor application pulls the trigger message on the DLSS.INIT queue.

6) The MQSeries Trigger Monitor application starts the DLSS Loan Wrapper/Adapter program. The
program reads the message from the queue and

09/28/01 54 – 54.1.3 28

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

7) Creates a flat file.

8) The DLSS Loan application is scheduled to pick up the newly created file. The Loan Application
uses the information in the file (SSN & Name) to retrieve detailed loan information.

9) The Loan application creates a flat file and calls the Adapter program.

10) The adapter program moves the data from the flat file to the transmission queue for SU35E16 and
SU35E17.

11) The message is moved to the queue WAS.FROM.EAI.RESPONSELOAN on the EAI bus.

12) The MQSeries Queue Manager on the EAI bus moves the message to
WAS.FROM.EAI.RESPONSELOAN

DLSS Real Time Adapter

Msg Flow
MQSeries
Adapter

MQSeries
Trigger
Monitor

WAS.TO.EAI.LOAN

EAI.FROM.WAS.LOAN

DLSS.TO.EAI.RESPONSELOAN
EAI.FROM.DLSS.RESPONSELOANWAS.FROM.EAI.RESPONSELOAN

QL

QL

QR

QR

(1) (2) (3)

(11)

(7)

(4)

(10)

Loan
Info

Request DLSS.FROM.EAI.LOAN.REAL

Qmgr: CRDEV2

QL

Qmgr:
SU35E5

Qmgr:
SU35E16/
SU35E17

DLSS Real Time Adapter Data Flow

Compaq Alpha
OpenVMS

CRDEV2/DLSS

SQL Code

WAS -Websphere
Application Server EAI BUS SERVER

EAI.TO.DLSS.LOAN.
REAL

(8)

QR

QR

QL

(9)

DLSS.INIT

(5)(6)

The flow of a MQSeries Request type message through the EAI System is as follows:

1) A MQSeries Request type message is put to the Cluster Queue EAI.FROM.WAS.LOAN from the

WAS box.

2) The MQSeries Queue Manager (SU35E5) on the WAS moves the message to the Local Queue
EAI.FROM.WAS.LOAN. The message is pulled from the EAI.FROM.WAS.LOAN and processed
through the DLSS –Message Flow.

3) The output message from the MQSI Message Flow is put to the Remote Queue
EAI.TO.DLSS.LOAN.REAL

09/28/01 54 – 54.1.3 29

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

4) The MQSeries Queue Manager (SU35E16/SU35E17) on the EAI Bus server moves the message to

the Local Queue DLSS.FROM.EAI.LOAN.REAL and based on the attributes set up in the queue, the
MQSeries Queue Manager (CRDEV2) puts a trigger message on the DLSS.INIT

5) The MQSeries Trigger Monitor application pulls the trigger message on the DLSS.INIT queue.

6) The MQSeries Trigger Monitor application starts the DLSS Real time/Adapter program. The
program reads the message from the queue and

7) SQL code is executed

8) The DLSS real time adapter retrieves the resulting data from the sql call

9) The adapter program moves puts the data to the queue.

10) The message is moved to the queue WAS.FROM.EAI.RESPONSELOAN on the EAI bus.

11) The MQSeries Queue Manager on the EAI bus moves the message to
WAS.FROM.EAI.RESPONSELOAN

DLSS Message Flow
Node Type Description/Function
DLSS Loan Input MQInput Gets message from EAI.FROM.WAS.LOAN queue
Trace on Input Trace Traces Flow
Verify SSN Filter Checks value of SSN <> ‘XXXXXXXXX’

If True goto Build DLSS Output Message
If False goto Build Error Message
If Unknown goto Unknown Filter Error
If Failure goto Invalid SSN

Build DLSS Output Message Compute Builds DLSS Loan message
Build Error Message Compute Builds Error Message
Unknown Filter Error MQOutput If Unknown Filter Error - Puts message to queue FLOW2.UNKNOWN
Invalid SSN MQOutput If failure on validation, message is put to queue FLOW2.FAILURE

09/28/01 54 – 54.1.3 30

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

Node Type Description/Function
Error Reply MQReply Sends message to the originator of the message
Trace1 Trace Traces flow
DLSS Queue MQOutput Puts message to queue EAI.TO.DLSS.LOAN

3.3.2.5 DLSS MQSeries Programming Sample Source Code
There are sample MQSeries programs that can be used as templates. The samples are provided with the
product and have been installed on the system. The sample programs are located in the directory pointed
to by the system logical mqs_examples on the DLSS system. The samples can be used as reference for
future EAI application development on the DLSS system.

3.3.3 Electronic Campus Based System (eCBS) EAI System Overview
eCBS is an application that communicates with an Oracle database on Sun Solaris. A custom MQSeries
adapter will be built to allow eCBS to leverage MQSeries and communicate with other systems within the
network. The custom MQSeries adapter will interact with eCBS through a batch and real-time interface.
The batch interface will communicate with eCBS through files, and the real-time interface will
communicate with eCBS through stored procedures.

3.3.3.1 eCBS Messaging Components
A custom built adapter is required to support the two eCBS sample applications used for the Release 2
EAI Core Architecture. The first sample application supports the eCBS batch functionality while the
second sample application supports the eCBS real-time functionality. The custom built adapter supports a
Request/Reply message type, the ability to invoke both eCBS sample applications, and provide any
responses back to the EAI Bus.

3.3.3.2 MQSeries Provided Adapters
No MQSeries provided adapters have been identified as part of the Enterprise Application Integration
Core Architecture Release 2. A custom developed MQ Adapter was required for the validation of the
eCBS EAI Core sample functionality. The description and function of this adapter is defined in Section
3.3.3.3.

3.3.3.3 eCBS Custom Built Adapters
A MQ custom developed adapter was designed and built to validate the EAI Core functionality for the
eCBS system. The adapter is broken into two components for batch and real-time processing. The first
component gets a message from an input queue on the eCBS system, stores the message data into a file,
reads the results from a file, and then puts the results into an output queue to be sent to the source server.
The second component gets a message from an input queue on the eCBS system, stores the message data
into a database table, reads the results from another database table, and then puts the results into an output
queue to be sent to the source server. This adapter is written in Java and interfaces with MQSeries using
the MQI. The AMI was not used because of an application restriction to remain at JDK 1.2. The adapter
is defined in Appendix A. The source code for the ECBS custom MQ adapter is stored in the ClearCase
repository.

09/28/01 54 – 54.1.3 31

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

3.3.3.4 eCBS Data Flow and Message Flow Diagrams

eCBS Batch Adapter

 WebSphere Application Server/

 eCBS Sun Server

WAS.FROM.ECBS
.FISAPSTATUS

SYSTEM.CLUSTER.
TRANSMISSION.

QUEUE

Qmgr: SU35E5

eCBS

MQSeries
Adapter ECBS.FROM.EAI.FI

SAP.BATCH

ECBS.INIT

(1) (2)

eCBS
MQSI

Msg Flow

EAI.FROM.WAS.FI
SAP

Qmgr: SU35E16/
SU35E17

EAI.TO.ECBS.FIS
AP.BATCH

WebSphere Application
Server

eCBS
FISAP

Request

eCBS System

PEPS Data
Feed

(3) (7)

(4)

(5)

(6)

(12)

(13)

(8)

Flat
File

(9)

Flat
File

(10)

(11)

EAI BUS Server

MQSeries
Trigger
Monitor

The flow of a MQSeries Request type message through the EAI System is as follows:

1) A MQSeries Request type message is placed on the

SYSTEM.CLUSTER.TRANSMISSION.QUEUE, that is destined for a cluster queue located on the
EAI Bus (SU35E16 or SU35E17).

2) The MQSeries Queue Manager (SU35E5) on the WAS moves the message to the cluster queue
EAI.FROM.WAS.FISAP. The message is pulled from the EAI.FROM.WAS.FISAP and processed
through the eCBS MQSI Message Flow. The eCBS MQSI Message Flow will determine weather
the data should be processed as a real-time transaction or as a batch process by eCBS.

3) Messages that will be processed by eCBS as a real-time transaction is put to the Remote Queue
EAI.TO.ECBS.FISAP.REAL by the eCBS MQSI Message Flow. The MQSeries Queue Manager

09/28/01 54 – 54.1.3 32

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

(SU35E16 or SU35E17) on the EAI Bus server moves the message to the Local Queue
ECBS.FROM.EAI.FISAP.REAL and based on the queue attributes, the MQSeries Queue Manager
(SU35E5) puts a trigger message on the ECBS.INIT queue.

4) Messages that will be processed by eCBS as a batch process is put to the Remote Queue
EAI.TO.ECBS.FISAP.BATCH by the eCBS MQSI Message Flow. The MQSeries Queue Manager
(SU35E16 or SU35E17) on the EAI Bus server moves the message to the Local Queue
ECBS.FROM.EAI.FISAP.BATCH and based on the queue attributes, the MQSeries Queue Manager
(SU35E5) puts a trigger message on the ECBS.INIT queue.

5) The MQSeries Trigger Monitor application pulls the trigger message off of the ECBS.INIT queue.
6) The MQSeries Trigger Monitor application starts the eCBS Adapter.
7) The eCBS Adapter reads the message(s) from the ECBS.FROM.EAI.FISAP.BATCH queue.
8) The eCBS Adapter stores the message(s) into a flat file.
9) eCBS monitors a directory for files created by the eCBS Adapter and then processes that data.
10) When a response is to be sent back from eCBS, eCBS will store that information into another file in

a directory which the eCBS Adapter monitors.
11) The eCBS Adapter monitors a directory for files created by eCBS and then reads in the data from the

file.
12) The eCBS Adapter creates an MQSeries message based on the data in the file and places it onto the

WAS.FROM.ECBS.FISAPSATUS Local queue on SU35E5.
13) The MQSeries Reply message containing any eCBS response is retrieved by WAS.

eCBS Real-Time Adapter

09/28/01 54 – 54.1.3 33

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

 WebSphere Application Server/
 eCBS Sun Server

WAS.FROM.ECBS
.FISAPSTATUS

SYSTEM.CLUSTER.
TRANSMISSION.

QUEUE

Qmgr: SU35E5

eCBS

MQSeries
Adapter ECBS.FROM.EAI.FI

SAP.REAL

ECBS.INIT

(1) (2)

eCBS
MQSI

Msg Flow

EAI.FROM.WAS.FI
SAP

EAI BUS Server

Qmgr: SU35E16/
SU35E17

EAI.TO.ECBS.FIS
AP.REAL

WebSphere Application
Server

eCBS
FISAP

Request

eCBS System

School Information
Stored

Procedure

(3) (7)

(4)

(5)

(6)

(9)

(10)

(8)

MQSeries
Trigger
Monitor

The flow of a MQSeries Request type message through the EAI System is as follows:

1) A MQSeries Request type message is placed on the

SYSTEM.CLUSTER.TRANSMISSION.QUEUE, that is destined for a cluster queue located on the
EAI Bus (SU35E16 or SU35E17).

2) The MQSeries Queue Manager (SU35E5) on the WAS moves the message to the cluster queue
EAI.FROM.WAS.FISAP. The message is pulled from the EAI.FROM.WAS.FISAP and processed
through the eCBS MQSI Message Flow. The eCBS MQSI Message Flow will determine weather the
data should be processed as a real-time transaction or as a batch process by eCBS.

3) Messages that will be processed by eCBS as a real-time transaction is put to the Remote Queue
EAI.TO.ECBS.FISAP.REAL by the eCBS MQSI Message Flow. The MQSeries Queue Manager
(SU35E16 or SU35E17) on the EAI Bus server moves the message to the Local Queue
ECBS.FROM.EAI.FISAP.REAL and based on the queue attributes, the MQSeries Queue Manager
(SU35E5) puts a trigger message on the ECBS.INIT queue.

4) Messages that will be processed by eCBS as a batch process is put to the Remote Queue
EAI.TO.ECBS.FISAP.BATCH by the eCBS MQSI Message Flow. The MQSeries Queue Manager
(SU35E16 or SU35E17) on the EAI Bus server moves the message to the Local Queue

09/28/01 54 – 54.1.3 34

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

ECBS.FROM.EAI.FISAP.BATCH and based on the queue attributes, the MQSeries Queue Manager
(SU35E5) puts a trigger message on the ECBS.INIT queue.

5) The MQSeries Trigger Monitor application pulls the trigger message off of the ECBS.INIT queue.
6) The MQSeries Trigger Monitor application starts the eCBS Adapter.
7) The eCBS Adapter reads the message(s) from the ECBS.FROM.EAI.FISAP.REAL queue.
8) The eCBS Adapter invokes a stored procedure on eCBS.
9) The information that is returned from the stored procedure is placed in a MQSeries Message that will

be placed on WAS.FROM.ECBS.FISAPSTATUS queue.
10) The MQSeries Reply message containing any eCBS response is retrieved by WAS.

eCBS Message Flow
Node Type Description/Function
Input Message Queue From WAS MQInput Gets message from queue EAI.FROM.WAS.FISAP
Trace1 Trace Traces input message
Determine If Batch Request Type Filter Checks if requesttype = 1

If True then Build eCBS Batch Request
If False goto Build eCBS Real-Time Request

Build eCBS Batch Request Compute Builds an output message for eCBS batch requests
Build eCBS Real-Time Request Compute Builds an output message for eCBS real-time requests
Build Error Message Compute Builds an error message
Send Error Back To Requestor MQReply Sends a message back to the requestor based on the reply to information
Trace2 Trace Traces output message
Output to Batch FMS Queue MQOutput Puts message to queue EAI.TO.FMS.FISSAP.BATCH
Output to Real-Time FMS Queue MQOutput Puts message to queue EAI.TO.FMS.FISSAP.REAL

3.3.3.5 eCBS MQSeries Programming Sample Source Code
There are sample MQSeries programs that can be used as templates. The samples are provided with the
product and have been installed on the system. The sample programs can be found in /opt/mqm/samp/.

09/28/01 54 – 54.1.3 35

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

3.3.4 Financial Management System (FMS) EAI System Overview
FMS is an Oracle Financials System that runs on HP-UX. The system currently accepts data from files
through its batch interface. FMS is currently in the process of implementing a real-time interface using
database tables for Phase IV. A custom MQSeries adapter will be built to allow the non-Oracle
Financials systems to communicate with FMS using MQSeries as the transport. The custom adapter will
interact with FMS through a batch and real-time interface. The batch interface will communicate with
FMS through files and the real-time interface will communicate with FMS through a database table.

3.3.4.1 FMS Messaging Components
A custom built adapter is required to support the two FMS sample applications used for the Release 2
EAI Core Architecture. The first sample application supports the FMS batch functionality while the
second sample application supports the FMS real-time functionality. The custom built adapter supports a
Request/Reply message type, the ability to invoke both FMS sample applications, and provide any
responses back to the EAI Bus.

3.3.4.2 MQSeries Provided Adapters
No MQSeries provided adapters have been identified as part of the Enterprise Application Integration
Core Architecture Release 2. A custom developed MQ Adapter was required for the validation of the
FMS EAI Core sample functionality. The description and function of this adapter is defined in Section
3.4.3.3.

3.3.4.3 FMS Custom Built Adapters
A MQ custom developed adapter was designed and built to validate the EAI Core functionality for the
FMS system. One adapter was created for the FMS system. The adapter is broken into two components
for batch and real-time processing. The first component gets a message from an input queue on the FMS
system, stores the message data into a file, reads the results from a file, and then puts the results into an
output queue to be sent to the source server. The second component gets a message from an input queue
on the FMS system, stores the message data into a database table, reads the results from another database
table, and then puts the results into an output queue to be sent to the source server. The adapter is defined
in Appendix A. The source code for the FMS custom MQ adapter is stored in the ClearCase repository.

3.3.4.4 FMS Data Flow and Message Flow Diagrams

09/28/01 54 – 54.1.3 36

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

FMS Batch Adapter

EAI.TO.FMS.RFM
S.REAL

FMS
MQSI
Msg
Flow EAI.FROM.WAS.R

FMS

SU35E5

EAI BUS Server
Qmgr: SU35E16/

SU35E17

WebSphere Application Server

WAS.FROM.EAI.R
FMSRESPONSE

FMS
Info

Request

SYSTEM.CLUSTER
.TRANSMISSION.Q

UEUE

Qmgr: SU35E5

FMS HP-UX Server

FMS
MQSeries
Adapter

SU35E16

FMS.FROM.EAI.RF
MS.BATCH

FMS System

General
Ledger
Module

Qmgr: HPL6

EAI.TO.FMS.RFM
S.BATCH

(1) (2)
(3)

(7)

(8)
(12)

(13) (14)

MQSeries
Trigger
Monitor

(6)

(5)

(10)

(11)

(4)

FMS.INIT

Flat
File

Flat
File

(9)

The flow of a MQSeries Request type message through the EAI System is as follows:

1) A MQSeries Request type message is placed on the

SYSTEM.CLUSTER.TRANSMISSION.QUEUE, that is destined for a cluster queue located on the
EAI Bus (SU35E16 or SU35E17).

2) The MQSeries Queue Manager (SU35E5) on the WAS moves the message to the cluster queue
EAI.FROM.WAS.RFMS. The message is pulled from the EAI.FROM.WAS.RFMS and processed
through the FMS MQSI Message Flow. The FMS MQSI Message Flow will determine weather the
data should be processed as a real-time transaction or as a batch process by FMS.

3) Messages that will be processed by FMS as a real-time transaction are put to the Remote Queue
EAI.TO.FMS.RFMS.BATCH by the FMS MQSI Message Flow. The MQSeries Queue Manager
(SU35E16 or SU35E17) on the EAI Bus server moves the message to the Local Queue
FMS.FROM.EAI.RFMS.BATCH on HPL6.

4) Based on the queue attributes for FMS.FROM.EAI.RFMS.BATCH, the MQSeries Queue Manager
(HPL6) puts a trigger message on the FMS.INIT queue.

5) The MQSeries Trigger Monitor application pulls the trigger message off of the FMS.INIT queue.
6) The MQSeries Trigger Monitor application starts the FMS Adapter.
7) The FMS Adapter reads the message(s) from the FMS.FROM.EAI.RFMS.BATCH queue.
8) The FMS Adapter stores the message(s) into a flat file.
9) FMS monitors a directory for files created by the FMS Adapter and then processes that data.
10) When a response is to be sent back from FMS, FMS will store that information into another file in a

directory which the FMS Adapter monitors.
11) The FMS Adapter monitors a directory for files created by FMS and then reads in the data from the

file.

09/28/01 54 – 54.1.3 37

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

12) The FMS Adapter creates an MQSeries message based on the data in the file and places it onto the

transmission queue for SU35E16.
13) The MQSeries Queue Manager (HPL6) on the FMS server moves the message to the Transmission

Queue SU35E5.
14) The MQSeries Queue Manager (SU35E16) on the EAI Bus server moves the message to the Local

Queue WAS.FROM.EAI.RFMSRESPONSE, specified as the reply-to queue by the FMS Info
Request application.

FMS Real-Time Adapter

EAI.TO.FMS.RFM
S.REAL

FMS
MQSI
Msg
Flow EAI.FROM.WAS.R

FMS

SU35E5

EAI BUS Server
Qmgr: SU35E16/

SU35E17

WebSphere Application Server

WAS.FROM.EAI.R
FMSRESPONSE

FMS
Info

Request

SYSTEM.CLUSTER
.TRANSMISSION.

QUEUE

Qmgr: SU35E5

FMS HP-UX Server

Database
Table

FMS
MQSeries
Adapter

SU35E16

FMS.FROM.EAI.RF
MS.REAL

FMS

RFMS
Database
Trigger

Qmgr: HPL6

EAI.TO.FMS.RFM
S.REAL

(1) (2)
(3)

(7)

(8)

(9)

(12)

(13) (14)

MQSeries
Trigger
Monitor

(6)

(5)

Database
Table

(10)

(11)

(4)

FMS.INIT

The flow of a MQSeries Request type message through the EAI System is as follows:

1) A MQSeries Request type message is placed on the

SYSTEM.CLUSTER.TRANSMISSION.QUEUE, that is destined for a cluster queues located on the
EAI Bus (SU35E16 or SU35E17).

2) The MQSeries Queue Manager (SU35E5) on the WAS moves the message to the cluster queue
EAI.FROM.WAS.RFMS. The message is pulled from the EAI.FROM.WAS.RFMS and processed
through the FMS MQSI Message Flow. The FMS MQSI Message Flow will determine weather the
data should be processed as a real-time transaction or as a batch process by FMS.

3) Messages that will be processed by FMS as a real-time transaction are put to the Remote Queue
EAI.TO.FMS.RFMS.REAL by the FMS MQSI Message Flow. The MQSeries Queue Manager
(SU35E16 or SU35E17) on the EAI Bus server moves the message to the Local Queue
FMS.FROM.EAI.RFMS.REAL on HPL6.

4) Based on the queue attributes for FMS.FROM.EAI.RFMS.REAL, the MQSeries Queue Manager
(HPL6) puts a trigger message on the FMS.INIT queue.

5) The MQSeries Trigger Monitor application pulls the trigger message off of the FMS.INIT queue.
6) The MQSeries Trigger Monitor application starts the FMS Adapter.
7) The FMS Adapter reads the message(s) from the FMS.FROM.EAI.RFMS.REAL queue.
09/28/01 54 – 54.1.3 38

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

8) The FMS Adapter stores the message(s) into an input database table.
9) FMS monitors the input database table and processes the data when new information is stored into the

database table.
10) When a real-time response is to be sent back from FMS, FMS will store that information into the

output database table, which the real-time component/program of the FMS Adapter monitors.
11) The FMS Adapter monitors an output database table for responses back from FMS.
12) The FMS Adapter creates an MQSeries message based on the rows in a database and places it onto

the transmission queue for SU35E16.
13) The MQSeries Queue Manager (HPL6) on the FMS server moves the message to the Transmission

Queue SU35E5.
14) The MQSeries Queue Manager (SU35E16) on the EAI Bus server moves the message to the Local

Queue WAS.FROM.EAI.RFMSRESPONSE, specified as the reply-to queue by the FMS Info
Request application.

FMS Message Flow
Node Type Description/Function
Input Message Queue From WAS MQInput Gets message from queue EAI.FROM.WAS.RFMS
Trace1 Trace Traces input message
Determine If Batch Request Type Filter Checks if requesttype = 1

If True then Build FMS Batch Request
If False goto Build FMS Real-Time Request

Build FMS Batch Request Compute Builds an output message for FMS batch requests
Build FMS Real-Time Request Compute Builds an output message for FMS real-time requests
Build Error Message Compute Builds an error message
Send Error Back To Requestor MQReply Sends a message back to the requestor based on the reply to information
Trace2 Trace Traces output message
Output to Batch FMS Queue MQOutput Puts message to queue EAI.TO.FMS.RFMS.BATCH
Output to Real-Time FMS Queue MQOutput Puts message to queue EAI.TO.FMS.RFMS.REAL

3.3.4.5 FMS MQSeries Programming Sample Source Code
There are sample MQSeries programs that can be used as templates. The samples are provided with the
product and have been installed on the system. The sample programs can be found in /opt/mqm/samp/.

09/28/01 54 – 54.1.3 39

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

3.3.5 LO System - Electronic Master Promissory Note (eMPN) EAI System Overview
The LO System – eMPN runs on HP-UX. The system accepts electronic master promissory notes
applications over the web. A custom MQSeries adapter will be built to allow COD to access this
information.

3.3.5.1 LO System - eMPN Messaging Components
A custom built adapter is required to support the sample application used for the Release 2 EAI Core
Architecture. The custom built adapter supports a Request/Reply message type and provide any responses
back to the EAI Bus.

3.3.5.2 MQSeries Provided Adapters
No MQSeries provided adapters have been identified as part of the Enterprise Application Integration
Core Architecture Release 2. A custom developed MQ Adapter was required for the validation of the LO
System – eMPN EAI Core sample functionality. The description and function of this adapter is defined
in Section 3.3.5.3.

3.3.5.3 LO System - eMPN Custom Built Adapters
A MQ custom developed adapter was designed and built to validate the EAI Core functionality for the LO
System – eMPN system. The component gets a message from an input queue on the LO System – eMPN
system, uses the content of the message as an input parameter to a pre-existing LO System – eMPN API
routine, and then puts the results retrieved from the API call into an output queue to be sent to the source
server. The adapter is defined in Appendix A. The source code for the LO System – eMPN custom MQ
adapter is stored in the ClearCase repository.

3.3.5.4 LO System - eMPN Data Flow and Message Flow Diagrams

09/28/01 54 – 54.1.3 40

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

EAI.TO.FMS.RFM
S.REAL

EAI.TO.FMS.RFM
S.REAL

EMPN
MQSI
Msg
FlowEAI.FROM.WAS.

EMPN
EAI.FROM.WAS.

EMPN

EAI.TO.WAS.EMPN
RESPONSE

EAI.TO.WAS.EMPN
RESPONSE

EAI BUS Server

Qmgr: SU35E16/
SU35E17

WebSphere Application Server

WAS.FROM.EAI.
EMPNRESPONSE
WAS.FROM.EAI.

EMPNRESPONSE

EMPN
Info

Request

SYSTEM.CLUSTER.
TRANSMISSION.QUEUE

Qmgr: SU35E5

LO System HP-UX Server

LO
System

MQSeries
Adapter

SU35E16 or
SU35E17

LOWEB.FROM.EAI.
EMPN

LOWEB.FROM.EAI.
EMPN

eMPN API

Qmgr: HPL12

EAI.TO.LOWEB.
EMPN

EAI.TO.LOWEB.
EMPN

(1) (2)
(3)

(7)

(8)
(10)

(11)(12)

MQSeries
Trigger
Monitor

(6)

(5)

(9)

(4)

LOWEB.EMPN.INITLOWEB.EMPN.INIT

The flow of a MQSeries Request type message through the EAI System is as follows:

1) A MQSeries Request type message is placed on the
SYSTEM.CLUSTER.TRANSMISSION.QUEUE, that is destined for a cluster queue located on
the EAI Bus (SU35E16 or SU35E17).

2) The MQSeries Queue Manager (SU35E5) on the WAS moves the message to the cluster queue
EAI.FROM.WAS.EMPN. The message is pulled from the EAI.FROM.WAS.EMPN and
processed through the EMPN MQSI Message Flow. The EMPN MQSI Message Flow will
determine whether the data should be processed by EMPN.

3) Messages that will be processed by EMPN are put to the Remote Queue EAI.TO.LOWEB.EMPN
by the EMPN MQSI Message Flow. The MQSeries Queue Manager (SU35E16 or SU35E17) on
the EAI Bus server moves the message to the Local Queue LOWEB.FROM.EAI.EMPN on
HPL12.

4) The MQSeries Queue Manager (HPL12) puts a trigger message on the LOWEB.EMPN.INIT
queue.

5) The MQSeries Trigger Monitor application pulls the trigger message off of the
LOWEB.EMPN.INIT queue.

6) The MQSeries Trigger Monitor application starts the EMPN Adapter.
7) The EMPN Adapter reads the message(s) from the LOWEB.FROM.EAI.EMPN queue.
8) The EMPN Adapter invokes the EMPN API with the message on the queue.
9) The EMPN API returns the results of the API call to the adapter.
10) The EMPN Adapter creates an MQSeries message based the returned data from the API call and

places it onto the transmission queue for SU35E16 or SU35E17.
11) The MQSeries Queue Manager (HPL12) on the EMPN server moves the message to the

Transmission Queue EAI.TO.WAS.EMPNRESPONSE.

09/28/01 54 – 54.1.3 41

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

12) The MQSeries Queue Manager (SU35E16 or SU35E17) on the EAI Bus server moves the

message to the Local Queue WAS.FROM.EAI.EMPNRESPONSE.

LO System - eMPN Message Flow
Node Type Description/Function
Input Message From WAS MQInput Gets message from queue EAI.FROM.WAS.EMPN
Trace1 Trace Traces input message
Verify Request Type Filter Validate message contents
Forward Request to LOWEB MQOutput Sends a message to LOWEB
Build Error Message Compute Builds an error message
Send Error Back To Requestor MQOutput Sends a message back to the requestor based on the reply to information

3.3.5.5 LO System – eMPN MQSeries Programming Sample Source Code
There are sample MQSeries programs that can be used as templates. The samples are provided with the
product and have been installed on the system. The sample programs can be found in /opt/mqm/samp/.

3.3.6 LO System - Promissory Note Imaging (P-Note Imaging) EAI System Overview
The LO System - P-Note Imaging metadata is generated on the LO Imaging Server, which is not
connected to the EAI bus. The data is transferred from the Imaging Server to the LO Web Server via a
process developed by the LO Contractors (EDS). This transfer process invokes an API to send the data
back to COD. The LO Web Server (LO System – P-Note component) runs on HP-UX.

3.3.6.1 LO System - P-Note Imaging Messaging Components

09/28/01 54 – 54.1.3 42

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

A custom built adapter is required to support the sample application used for the Release 2 EAI Core
Architecture. The custom built adapter supports a Request/Reply message type and provide any responses
back to the EAI Bus.

3.3.6.2 MQSeries Provided Adapters
No MQSeries provided adapters have been identified as part of the Enterprise Application Integration
Core Architecture Release 2. A custom developed MQ Adapter was required for the validation of the LO
System – P-Note Imaging EAI Core sample functionality. The description and function of this adapter is
defined in Section 3.3.6.3.

3.3.6.3 LO System - P-Note Imaging Custom Built Adapters
An MQ custom developed adapter was designed and built to validate the EAI Core functionality for the
LO System – P-Note Imaging system. Due to restrictions of the Imaging Server to send data only, the
Imaging server will push data to the LOWeb Server for Modernization interfaces. The P-Note API will
trigger the P-Note adapter to put data in the output queue. The component gets a message from an input
queue on the LO Web Server. It then invokes the API routine that is used to send imaging metadata from
the LO Web Server to COD. The adapter is defined in Appendix A. The source code for the LO System
– P-Note Imaging custom MQ adapter is stored in the ClearCase repository.

3.3.6.4 LO System - P-Note Imaging Data Flow and Message Flow Diagrams

EAI.TO.FMS.RFM
S.REAL

EAI.TO.FMS.RFM
S.REAL

PNOTE
MQSI
Msg
FlowEAI.FROM.WAS.

PNOTE
EAI.FROM.WAS.

PNOTE

EAI.TO.WAS.PNOTE
RESPONSE

EAI.TO.WAS.PNOTE
RESPONSE

EAI BUS Server

Qmgr: SU35E16/
SU35E17

WebSphere Application Server

WAS.FROM.EAI.PNOTE
RESPONSE

WAS.FROM.EAI.PNOTE
RESPONSE

PNOTE
Info

Request

SYSTEM.CLUSTER.
TRANSMISSION.QUEUE

Qmgr: SU35E5

LO System HP-UX Server

LO
System

MQSeries
Adapter

SU35E16 or
SU35E17

LOWEB.FROM.EAI.
PNOTE

LOWEB.FROM.EAI.
PNOTE

Adapter
add-on

Qmgr: HPL12

EAI.TO.LOWEB.
PNOTE

EAI.TO.LOWEB.
PNOTE

(1) (2)

(3)

(7)

(8)

(10)(11)

MQSeries
Trigger
Monitor

(6)

(5)

(9)

(4)

LOWEB.PNOTE.INITLOWEB.PNOTE.INIT

LO System Imaging NT Server

PNOTE API
Socket – EDS responsible for build

The flow of a MQSeries Request type message through the EAI System is as follows:

1) A MQSeries Request type message is placed on the
SYSTEM.CLUSTER.TRANSMISSION.QUEUE, that is destined for a cluster queue located on
the EAI Bus (SU35E16 or SU35E17).

09/28/01 54 – 54.1.3 43

2) The MQSeries Queue Manager (SU35E5) on the WAS moves the message to the cluster queue
EAI.FROM.WAS.PNOTE. The message is pulled from the EAI.FROM.WAS.PNOTE and

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

processed through the PNOTE MQSI Message Flow. The PNOTE MQSI Message Flow will
determine whether the data should be processed as a real-time transaction or as a batch process by
PNOTE.

3) Messages that will be processed by PNOTE are put to the Remote Queue
EAI.TO.LOWEB.PNOTE by the PNOTE MQSI Message Flow. The MQSeries Queue Manager
(SU35E16 or SU35E17) on the EAI Bus server moves the message to the Local Queue
LOWEB.FROM.EAI.PNOTE on HPL12.

4) Based on the queue attributes for LOWEB.FROM.EAI.PNOTE, the MQSeries Queue Manager
(HPL12) puts a trigger message on the LOWEB.PNOTE.INIT queue.

5) The MQSeries Trigger Monitor application pulls the trigger message off of the
LOWEB.PNOTE.INIT queue.

6) The MQSeries Trigger Monitor application starts the PNOTE Adapter.
7) The PNOTE Adapter reads the message(s) from the LOWEB.FROM.EAI.PNOTE queue.
8) The PNOTE Adapter invokes the PNOTE API to create a return message.
9) The PNOTE API creates an MQSeries message and places it onto the transmission queue for

SU35E16 or SU35E17.
10) The MQSeries Queue Manager (HPL12) on the PNOTE server moves the message to the

Transmission Queue EAI.TO.WAS.PNOTERESPONSE.
11) The MQSeries Queue Manager (SU35E16 or SU35E17) on the EAI Bus server moves the

message to the Local Queue WAS.FROM.EAI.PNOTERESPONSE.

09/28/01 54 – 54.1.3 44

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

LO System - P-Note Imaging Message Flow
Node Type Description/Function
Input Message From WAS MQInput Gets message from queue EAI.FROM.WAS.PNOTE
Trace1 Trace Traces input message
Verify Request Type Compute Validate message contents
Forward Request to LOWEB MQOutput Sends a message to LOWEB
Build Error Message Compute Builds an error message
Send Error Back To Requestor MQOutput Sends a message back to the requestor based on the reply to information

3.3.6.5 LO System - P-Note Imaging MQSeries Programming Sample Source Code
There are sample MQSeries programs that can be used as templates. The samples are provided with the
product and have been installed on the system. The sample programs can be found in /opt/mqm/samp/.

3.3.7 Post-Secondary Education Participants System (PEPS) EAI System Overview
The PEPS system uses Oracle Forms to access data from a database. There currently does not exist an
Oracle Forms adapter for MQSeries. The decision to validate the EAI connectivity for the PEPS system
was to create stored procedures on the PEPS server to replicate the business application logic built into
the Oracle Forms. A stored procedure will be used as the sample application that will be built for the test
of the PEPS interface to the EAI Bus. A custom MQSeries adapter will be required to access the sample
application using the stored procedure.

3.3.7.1 PEPS Messaging Components
A custom built adapter is required to support the sample application used for the Release 1 EAI Core
Architecture. The sample application supports the OPE Id School Eligibility Request functionality. A
Request/Reply message type will be used to test the integration of the sample application. The adapter
supports a Request/Reply message type for the sample application to pull data from PEPS and provide the
response back to the EAI Bus.

3.3.7.2 MQSeries Provided Adapters
No MQSeries provided adapters have been identified as part of the Enterprise Application Integration
Core Architecture Release 1. A custom developed MQ Adapter was required for the validation of the
PEPS EAI Core sample functionality. The description and function of this adapter is defined in Section
3.3.2.3.

09/28/01 54 – 54.1.3 45

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

3.3.7.3 PEPS Custom Built Adapters
A MQ custom developed adapter was designed and built to validate the EAI Core functionality for the
PEPS system. This adapter is written in Java and provides the functionality to retrieve a message from an
input queue on the PEPS system, execute a stored procedure to retrieve data from the PEPS database, and
put the results into an output queue to be sent to the source server. The adapter is defined in Appendix A.
The source code for the PEPS custom MQ adapter is stored in the ClearCase repository.

3.3.7.4 PEPS Data Flow and Message Flow Diagrams

PEPS
MQSI

message
flow

PEPS
Oracle

DB

PEPS MQ
Wrapper/
Adapter:

 EAIPEWSE
MQSeries

Trigger
Monitor

SYSTEM.CLUSTER.
TRANSMIT.QUEUE EAI.FROM.WAS.

GETSCHOOL

SU35E16 or SU35E17WAS.FROM.EAI.
REPLYSCHOOLWAS.FROM.EAI.

REPLYSCHOOL

QL

QL

(1) (2) (3)
(4)

(7)

(5)

(10)

PEPS
Request

PEPS.FROM.EAI.
GETSCHOOL

Qmgr: PEPSK570

QL

Qmgr:
SU35E5

Qmgr:
SU35E16/
SU35E17

EAI PEPS Data Flow

PEPS HP-UX
Environment

PEPS
Stored

Procedure

WAS -Websphere
Application Server EAI BUS SERVER

EAI.TO.PEPS.
GETSCHOOL

(8)

(9)

(6)

QR

QR

QL
PEPS.INIT

QR

QL

(11)(12)

The flow of a MQSeries Request type message through the EAI PEPS Request Design is as follows:

1) A PEPS MQSeries Request type message is put to the Cluster Queue

EAI.FROM.WAS.GETSCHOOL from the WAS box.

2) The MQSeries Queue Manager (SU35E5) on the WAS moves the message to the Local Queue
EAI.FROM.WAS.GETSCHOOL.

3) The message is pulled from the EAI.FROM.WAS.GETSCHOOL and processed through the PEPS
MQSI Message Flow.

4) The output message from the PEPS MQSI Message Flow is put to the Remote Queue
EAI.TO.PEPS.GETSCHOOL.

09/28/01 54 – 54.1.3 46

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

5) The MQSeries Queue Manager (SU35E16/SU35E17) on the EAI Bus server moves the message to

the Local Queue PEPS.FROM.EAI.GETSCHOOL and based on the attributes set up in the queue, the
MQSeries Queue Manager (PEPSK570) on PEPS puts a trigger message on the initiation queue:
PEPS.INIT.

6) The MQSeries Trigger Monitor application pulls the trigger message from the PEPS.INIT queue.

7) The MQSeries Trigger Monitor application starts the PEPS MQ Wrapper/Adapter application.

8) The PEPS MQ Wrapper/Adapter pulls the message from the PEPS.FROM.EAI.GETSCHOOL.

9) The PEPS MQ Wrapper/Adapter application calls the PEPS API to pull data from the PEPS Oracle
database and pass back the data retrieved.

10) The PEPS MQ Wrapper/Adapter puts the PEPS message into the transmission Queue for the
SU35E16 or SU35E17.

11) The MQSeries Queue Manager (PEPSK570) on PEPS moves the reply message to the Remote Queue
WAS.FROM.EAI.REPLYSCHOOL.

12) The MQSeries Queue Manager (SU35E16/SU35E17) on the EAI Bus server moves the reply message
to the Local Queue WAS.FROM.EAI.REPLYSCHOOL.

PEPS Message Flow
Node Type Description/Function
Input Message Queue From WAS MQInput Gets message from queue EAI.FROM.WAS.GETSCHOOL
Trace1 Trace Traces flow
Determine Request Type Filter Checks if requesttype = 1

If True goto Format SQL Request
If False goto Format Oracle Call Request

Format SQL Request Compute Builds message
Output Trace Trace Traces flow
Format Oracle Call Request Compute Builds message
Output Queue to PEPS MQOutput Puts message to queue EAI.TO.PEPS.GETSCHOOL

09/28/01 54 – 54.1.3 47

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

3.3.7.5 PEPS MQSeries Programming Sample Source code
There are sample MQSeries programs that can be used as templates. The samples are provided with the
product and have been installed on the system. The sample programs can be found in /home/mqm/peps/.

3.4 WEBSPHERE APPLICATION SERVER
The Integrated Technical Architecture (ITA) team on the Modernization project supports installation and
configuration of the WebSphere Application Server (WAS). MQSeries messaging has been installed on a
development WebSphere Application Server to support the validation of the Release 1 EAI Core
architecture to send messages from the ITA Internet domain, through the EAI Bus to each targeted
Release 1 and 2 legacy systems. The results of each request are sent back to the source server for
display/write to a file. For each of the Release 1 and 2 legacy systems a simple inquiry function will be
implemented to send a message to each target legacy system, build the required message transformation,
and route to the target legacy system. The EAI Core Architecture team worked along side the ITA team to
provide an adequate test and development environment to design, develop and implement an EAI Release
1 test application to validate each of the sample EAI functionality for each Release 1 and 2 legacy system.

3.4.1 EAI WAS Request / Reply Data Flow
The figure below describes the message flow through the WebSphere application server.

MQSI
Pilot

Message
Flows

SYSTEM.CLUSTER.TRANSMIT.QUEUE Request Msg Q's to Bus

Reply Msg Q's to WAS
Reply Msg Q's on WAS

QL

QL

(1)

(2) (6)

(10)

Request/Reply

Pilot

Application

Qmgr:
SU35E5

Qmgr:
SU35E16/
SU35E17

EAI WAS Data Flow

WAS -Websphere
Application Server

EAI BUS SERVER

Request Msg Q's to Legacy
Systems

(7)

QR

QR

Legacy Systems

Storage
Medium

(3) (4) (5)

(9)

(8)

QL

09/28/01 54 – 54.1.3 48

The flow of a MQSeries Request type message through the EAI WAS Request Design is as follows:

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION THREE: INTEGRATION ARCHITECTURE

1) A message is read from some storage medium from a WAS Request/Reply test application.

2) The test application creates a Request type message and puts it to a Cluster Queue from the WAS
box.

3) The MQSeries Queue Manager (SU35E5) on the WAS moves the Request message to the Local
Queue on an EAI Bus server.

4) The Request message is pulled from the queue and processed through a MQSI Message Flow.

5) The output Request message from the MQSI Message Flow is put to a Remote Queue.

6) The MQSeries Queue Manager (SU35E16/SU35E17) on the EAI Bus server moves the message to a
Local Queue on a Legacy System.

7) After the Legacy System MQSeries Adapter(s) process the Request message, a Reply message is put
to a Remote Queue on the EAI Bus Server.

8) The MQSeries Queue Manager (SU35E16/SU35E17) on the EAI Bus server moves the Reply
message(s) to a Local Queue on the WAS.

9) The test application on the WAS, pulls the Reply message from the Local Queue.

10) The test application will write the response out to some storage medium.

3.4.2 MQ-WebSphere Adapter
In order to interact with MQSeries from a WebSphere Application Server application it is necessary to
create a mechanism by which the two may interact. WAS has no implicit knowledge of MQSeries so
applications must invoke manually whatever function is needed. For the CORE release a single class
was created which has two major functions. First, it accepts parameters from application programs and
formats XML requests specific to the target system. For example, a CPS request to inquire on application
status requires that the user input an SSN and a Name ID. These items are formatted into an XML
document that is ready to then be placed into MQSeries. Secondly, the class establishes a connection
with MQSeries and places that request into the proper queue. It then waits a fixed period of time for a
reply, sending that reply in string format back to the calling application that then formats it for display.
This layer of isolation removes the need for the application programs to have any knowledge of
MQSeries.

For each sample application validated for Release 1 and 2 the input/output data for/from each legacy
system is stored on a directory on the WAS server. Each legacy system contains its own high- level
directory structure with 2 subdirectories, input and output. The input directory contains the input data for
sending a message to the target system, while the output directory contains the resulting response data
form each legacy system.

See the Appendix A for the name of the WAS MQ Adapter. The source code for the adapter is stored in
the ClearCase repository.

09/28/01 54 – 54.1.3 49

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION 4: EXECUTION ARCHITECTURE COMPONENTS

4 SFA EAI ARCHITECTURE CUSTOMIZATION
This section describes the SFA Enterprise Application Integration (EAI) Bus Architecture customization
required. The installation and configuration customization and other components that are customized for
SFA are described.

4.1 MQSERIES IMPLEMENTATION AND CONFIGURATIONS FOR THE NON-LEGACY INTEGRATION
RELEASE 1 AND 2
This section describes installation and configuration customization required for the Non-Legacy systems
at SFA. Each system described will have unique characteristics to it. The sections have been organized
for each system in such a way that makes this section easier to follow. Systems with common
characteristics may be combined together to reduce complexity and redundancy within the
documentation.

The queue managers that have been created on the EAI Bus servers have been defined as part of a
MQSeries cluster. These two queue managers are both full repository queue managers. This means that
each queue manager will hold all information required when adding queues to the cluster and joining new
queue managers to the cluster. This way there is one queue manager as a back up cluster repository. The
cluster name that is defined for this cluster is “EAI”. In order to prepare the EAI Bus servers to define
the cluster, MQSeries for Sun Solaris version 5.2 has been installed and configured. The table below
describes the MQSeries objects and names of the objects created for the EAI Bus servers. The MQSeries
objects that have been created were the minimum required objects to support the EAI Core Architecture
Release 1 sample application testing.

Each of the queue managers has been altered to use their specific Dead Letter Queue. Each of the queue
managers has channel definitions defined for them to the Legacy Systems defined as part of the Release 1
and 2 EAI Core Architecture. A listener process has been started in background for each receiving
channel for a queue manager using the supplied listener from MQSeries. These have been started in
background to help prevent someone from killing the process unnecessarily. In order for the MQSeries
listener to survive a system restart and terminate properly upon system shutdown, the MQSeries control
command to start the listener must be placed in the system startup and shutdown scripts.

The systems described are as follows:

1) WebSphere Application Server

2) EAI Bus Servers

3) MQSI Configuration Manager NT Server

4.1.1 MQSeries for WebSphere on Solaris

The table below contains the MQSeries objects defined on the WebSphere Application Server

MQSeries Queue Manager(s) and Objects

09/28/01 54 – 54.1.3 50

MQ ObjectName Description Object Type
SU35E5 Queue Manager for Test

Environment
Queue Manager

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION 4: EXECUTION ARCHITECTURE COMPONENTS

MQ ObjectName Description Object Type
SU35E5.DEAD.LETTER.QUEUE Dead Letter Queue Local Queue
TO.SU35E16 Sender Channel Cluster Sender

Channel
TO.SU35E5 Receiver Channel Cluster Receiver

Channel
WAS.FROM.EAI.REPLYMAIL Reply Queue for bTrade

pilot
Local Queue

WAS.FROM.EAI.REQAPPSTATUS Reply Queue for CPS
pilot

Local Queue

WAS.FROM.EAI.RESPONSELOAN Reply Queue for DLSS
pilot

Local Queue

WAS.FROM.ECBS.FISAPSTATUS Reply Queue for eCBS
pilot

Local Queue

WAS.FROM.EAI.RFMSRESPONSE Reply Queue for FMS
pilot

Local Queue

WAS.FROM.EAI.EMPNRESPONSE Reply Queue for EMPN
pilot

Local Queue

WAS.FROM.EAI.PNOTE
RESPONSE

Reply Queue for PNOTE
pilot

Local Queue

WAS.FROM.EAI.REQPELL Reply Queue for NSLDS
pilot

Local Queue

WAS.FROM.EAI.REPLYSCHOOL Reply Queue for PEPS
pilot

Local Queue

4.1.2 EAI Bus Client / Server Configuration and Design

The table below contains the MQSeries objects defined on the EAI Bus. SU35E16 and SU35E17 are in
the EAI Cluster.

MQSeries Queue Manager(s) and objects
MQ ObjectName Description Object Type
EAI Cluster Name Cluster
SU35E16 Queue Manager for Test

Environment
Queue Manager

SU35E16.DEAD.LETTER.QUEUE Dead Letter Queue Local Queue
TO.SU35E5 Sender Channel Cluster Sender

Channel
TO.SU35E16 Receiver Channel Cluster Receiver

Channel
TO.SU35E17 Sender Channel Cluster Sender

Channel
SU35E5 Transmission Queue for

Test Environment
Transmission Queue

09/28/01 54 – 54.1.3 51

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION 4: EXECUTION ARCHITECTURE COMPONENTS

MQ ObjectName Description Object Type
NTT1 Transmission Queue for

Test Environment
Transmission Queue

NPT1 Transmission Queue for
Test Environment

Transmission Queue

CPT1 Transmission Queue for
Test Environment

Transmission Queue

CRDEV2 Transmission Queue for
Test Environment

Transmission Queue

HPDEV1 Transmission Queue for
Test Environment

Transmission Queue

PEPSK570 Transmission Queue for
Test Environment

Transmission Queue

EAI.FROM.WAS.REQPELL Input Queue for NSLDS
pilot

Local Queue

EAI.TO.NSLDS.REQPELL Output Queue for
NSLDS pilot

Remote Queue

WAS.FROM.EAI.REPLYPELL Reply Queue for NSLDS
pilot

Remote Queue

EAI.FROM.WAS.REQAPPSTATUS Input Queue for CPS
pilot

Local Queue

EAI.TO.CPS.REQAPPSTATUS Output Queue for CPS
pilot

Remote Queue

WAS.FROM.EAI.REPLYAPPSTATUS Reply Queue for CPS
pilot

Remote Queue

EAI.FROM.WAS.LOAN Input Queue for DLSS
pilot

Local Queue

EAI.TO.DLSS.LOAN Output Queue for DLSS
pilot

Remote Queue

WAS.FROM.EAI.RESPONSELOAN Reply Queue for DLSS
pilot

Remote Queue

EAI.FROM.WAS.GETSCHOOL Input Queue for PEPS
pilot

Local Queue

EAI.TO.PEPS.GETSCHOOL Output Queue for PEPS
pilot

Remote Queue

WAS.FROM.EAI.REPLYSCHOOL Reply Queue for PEPS
pilot

Remote Queue

EAI.FROM.WAS.GETMAIL Input Queue for bTrade
pilot

Local Queue

EAI.TO.BTRADE.GETMAIL Output Queue for bTrade
pilot

Remote Queue

WAS.FROM.EAI.REPLYMAIL Reply Queue for bTrade
pilot

Remote Queue

09/28/01 54 – 54.1.3 52

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION 4: EXECUTION ARCHITECTURE COMPONENTS

MQ ObjectName Description Object Type
HPL6 Transmission Queue for

Test Environment
Transmission Queue

HPL6.SU35E16 Receiver channel from
HPL6 for FMS pilot

Receiver Channel

SU35E16.HPL6 Sender channel to HPL6
for FMS pilot

Sender Channel

EAI.FROM.WAS.RFMS Input Queue for FMS
pilot

Local Queue

EAI.TO.FMS.RFMS.REAL Output Queue for FMS
pilot

Remote Queue

EAI.TO.FMS.RFMS.BATCH Output Queue for FMS
pilot

Remote Queue

EAI.FROM.WAS.FISAP Input Queue for ECBS
Pilot

Local Queue

EAI.TO.ECBS.FISAP.REAL Output Queue for ECBS
Pilot

Remote Queue

EAI.TO.ECBS.FISAP.BATCH Output Queue for ECBS
Pilot

Remote Queue

HPL12 Transmission Queue for
Test Environment

Transmission Queue

HPL12.SU35E16 Receiver channel from
EMPN and PNOTE pilots

Receiver Channel

SU35E16.HPL12 Sender channel to EMPN
and PNOTE pilots

Sender Channel

EAI.FROM.WAS.EMPN Input Queue for EMPN
pilot

Local Queue

EAI.FROM.WAS.PNOTE Input Queue for PNOTE
pilot

Local Queue

EAI.TO.LOWEB.EMPN Output Queue for EMPN
pilot

Remote Queue

EAI.TO.LOWEB.PNOTE Output Queue for
PNOTE pilot

Remote Queue

EAI.TO.WAS.EMPNRESPONSE Reply Queue for EMPN
pilot

Remote Queue

EAI.TO.WAS.PNOTE
RESPONSE

Reply Queue for PNOTE
pilot

Remote Queue

SU35E17 Queue Manager for Test
Environment

Queue Manager

SU35E17.DEAD.LETTER.QUEUE Dead Letter Queue Local Queue
TO.SU35E5 Sender Channel Cluster Sender

Channel
TO.SU35E17 Receiver Channel Cluster Receiver

Channel
TO.SU35E16 Sender Channel Cluster Sender

Channel
SU35E5 Transmission Queue for

Test Environment
Transmission Queue

09/28/01 54 – 54.1.3 53

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION 4: EXECUTION ARCHITECTURE COMPONENTS

MQ ObjectName Description Object Type
NTT1 Transmission Queue for

Test Environment
Transmission Queue

NPT1 Transmission Queue for
Test Environment

Transmission Queue

CPT1 Transmission Queue for
Test Environment

Transmission Queue

CRDEV2 Transmission Queue for
Test Environment

Transmission Queue

HPDEV1 Transmission Queue for
Test Environment

Transmission Queue

PEPSK570 Transmission Queue for
Test Environment

Transmission Queue

EAI.FROM.WAS.REQPELL Input Queue for NSLDS
pilot

Local Queue

EAI.TO.NSLDS.REQPELL Output Queue for
NSLDS pilot

Remote Queue

WAS.FROM.EAI.REPLYPELL Reply Queue for NSLDS
pilot

Remote Queue

EAI.FROM.WAS.REQAPPSTATUS Input Queue for CPS
pilot

Local Queue

EAI.TO.CPS.REQAPPSTATUS Output Queue for CPS
pilot

Remote Queue

WAS.FROM.EAI.REPLYAPPSTATUS Reply Queue for CPS
pilot

Remote Queue

EAI.FROM.WAS.LOAN Input Queue for DLSS
pilot

Local Queue

EAI.TO.DLSS.LOAN Output Queue for DLSS
pilot

Remote Queue

WAS.FROM.EAI.RESPONSELOAN Reply Queue for DLSS
pilot

Remote Queue

EAI.FROM.WAS.GETSCHOOL Input Queue for PEPS
pilot

Local Queue

EAI.TO.PEPS.GETSCHOOL Output Queue for PEPS
pilot

Remote Queue

WAS.FROM.EAI.REPLYSCHOOL Reply Queue for PEPS
pilot

Remote Queue

EAI.FROM.WAS.GETMAIL Input Queue for bTrade
pilot

Local Queue

EAI.TO.BTRADE.GETMAIL Output Queue for bTrade
pilot

Remote Queue

WAS.FROM.EAI.REPLYMAIL Reply Queue for bTrade
pilot

Remote Queue

HPL6 Transmission Queue for
Test Environment

Transmission Queue

HPL6.SU35E17 Receiver channel from
HPL6 for FMS pilot

Receiver Channel

09/28/01 54 – 54.1.3 54

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION 4: EXECUTION ARCHITECTURE COMPONENTS

MQ ObjectName Description Object Type
SU35E17.HPL6 Sender channel to HPL6

for FMS pilot
Sender Channel

EAI.TO.FMS.RFMS.REAL Output Queue for FMS
pilot

Remote Queue

EAI.TO.FMS.RFMS.BATCH Output Queue for FMS
pilot

Remote Queue

EAI.TO.ECBS.FISAP.REAL Output Queue for ECBS
Pilot

Remote Queue

EAI.TO.ECBS.FISAP.BATCH Output Queue for ECBS
Pilot

Remote Queue

HPL12 Transmission Queue for
Test Environment

Transmission Queue

HPL12.SU35E17 Receiver channel from
EMPN and PNOTE pilots

Receiver Channel

SU35E17.HPL12 Sender channel to EMPN
and PNOTE pilots

Sender Channel

EAI.TO.LOWEB.EMPN Output Queue for EMPN
pilot

Remote Queue

EAI.TO.LOWEB.PNOTE Output Queue for
PNOTE pilot

Remote Queue

EAI.TO.WAS.EMPNRESPONSE Reply Queue for EMPN
pilot

Remote Queue

EAI.TO.WAS.PNOTE
RESPONSE

Reply Queue for PNOTE
pilot

Remote Queue

4.1.3 MQSeries Implementation and Configurations for the Legacy Integration Release 1 and 2
This section describes installation and configuration customization required for the Legacy systems at
SFA. Each system described will have unique characteristics to it. This document has tried to organize
the sections in such a way that systems with common characteristics are combined together in order to
reduce complexity and redundancy within the documentation. The systems described in this section are:

1. bTrade
2. CPS and NSLDS
3. DLSS
4. eCBS
5. FMS
6. LO System – eMPN
7. LO System – P-Note Imaging
8. PEPS

4.1.3.1 MQSeries for bTrade on HP-UX
The MQSeries objects defined on the bTrade system are contained in the table below.

09/28/01 54 – 54.1.3 55

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION 4: EXECUTION ARCHITECTURE COMPONENTS

MQSeries Queue Manager(s) and objects:
MQ ObjectName Description Object Type
HPDEV1 Queue Manager for Test

Environment
Queue Manager

HPDEV1.DEAD.LETTER.QUEUE Dead Letter Queue Local Queue
HPDEV1.SU35E16 Sender Channel Sender Channel
SU35E16. HPDEV1 Receiver Channel Receiver Channel
SU35E16 Transmission Queue for

Test Environment
Transmission Queue

HPDEV1.SU35E17 Sender Channel Sender Channel
SU35E17.HPDEV1 Receiver Channel Receiver Channel
SU35E17 Transmission Queue for

Test Environment
Transmission Queue

BTRADE.GETMAIL.PROCESS Process definition for
pilot

Process

BTRADE.INIT Initiation Queue for
pilot

Local Queue

BTRADE.FROM.EAI.GETMAIL Input Queue for pilot Local Queue

4.1.3.2 MQSeries for CPS and NSLDS on OS/390
The MQSeries objects defined on the CPS and NSLDS systems are contained in the table below.

MQSeries Queue Manager(s) and objects:
MQ ObjectName Description Object Type
CST1 Queue Manager for

System LPAR (test
region)

Queue Manager

CST1.DEAD.QUEUE Dead Letter Queue Local Queue
N/A Sender Channel Sender Channel
N/A Receiver Channel Receiver Channel
N/A Transmission Queue for

Test region
Transmission Queue

N/A Sender Channel Sender Channel
N/A Receiver Channel Receiver Channel
N/A Transmission Queue for

Test region
Transmission Queue

N/A Reply Queue for pilot Remote Queue
N/A Input Queue for DPL

Bridge programs
Local Queue

CPT1 Queue Manager for
Production LPAR (test
region)

Queue Manager

CPT1.DEAD.QUEUE Dead Letter Queue Local Queue
CPT1.SU35E16 Sender Channel Sender Channel
SU35E16.CPT1 Receiver Channel Receiver Channel

09/28/01 54 – 54.1.3 56

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION 4: EXECUTION ARCHITECTURE COMPONENTS

MQ ObjectName Description Object Type
SU35E16 Transmission Queue for

Test region
Transmission Queue

CPT1.SU35E17 Sender Channel Sender Channel
SU35E17.CPT1 Receiver Channel Receiver Channel
SU35E17 Transmission Queue for

Test region
Transmission Queue

CPT1.CICSDEV2.BRIDGE.QUEUE Input Queue for DPL
Bridge programs

Local Queue

CPP1 Queue Manager for
Production LPAR
(production region)

Queue Manager

CPP1.DEAD.LETTER.QUEUE Dead Letter Queue Local Queue
CSP1.SU35E16 Sender Channel Sender Channel
SU35E16.CSP1 Receiver Channel Receiver Channel
SU35E16 Transmission Queue

for Test region
Transmission Queue

CSP1.SU35E17 Sender Channel Sender Channel
SU35E17.CSP1 Receiver Channel Receiver Channel
SU35E17 Transmission Queue for

Test region
Transmission Queue

CPP1.CICS.BRIDGE.QUEUE Input Queue for DPL
Bridge programs

Local Queue

NST1 Queue Manager for
System LPAR (test
region)

Queue Manager

NST1.DEAD.QUEUE Dead Letter Queue Local Queue
N/A Sender Channel Sender Channel
N/A Receiver Channel Receiver Channel
N/A Transmission Queue for

Test region
Transmission Queue

N/A Sender Channel Sender Channel
N/A Receiver Channel Receiver Channel
N/A Transmission Queue for

Test region
Transmission Queue

N/A Reply Queue for pilot Remote Queue
N/A Input Queue for DPL

Bridge programs
Local Queue

N/A Input Queue for Other
tests required

Local Queue

NTT1 Queue Manager for Test
LPAR (test region)

Queue Manager

NTT1.DEAD.QUEUE Dead Letter Queue Local Queue
NTT1.SU35E16 Sender Channel Sender Channel
SU35E16.NTT1 Receiver Channel Receiver Channel
SU35E16 Transmission Queue for

Test region
Transmission Queue

09/28/01 54 – 54.1.3 57

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION 4: EXECUTION ARCHITECTURE COMPONENTS

MQ ObjectName Description Object Type
NTT1.SU35E17 Sender Channel Sender Channel
SU35E17.NTT1 Receiver Channel Receiver Channel
SU35E17 Transmission Queue for

Test region
Transmission Queue

NSLDS.FROM.EAI.PELL Input Queue for pilot Local Queue
NSLDS.PELL.PROCESS Process for pilot Process definition
NSLDS.INIT Initiation Queue for

pilot
Local Queue

NPT1 Queue Manager for
Production LPAR (test
region)

Queue Manager

NPT1.DEAD.QUEUE Dead Letter Queue Local Queue
NPT1.SU35E16 Sender Channel Sender Channel
SU35E16.NPT1 Receiver Channel Receiver Channel
SU35E16 Transmission Queue for

Test region
Transmission Queue

NPT1.SU35E17 Sender Channel Sender Channel
SU35E17.NPT1 Receiver Channel Receiver Channel
SU35E17 Transmission Queue for

Test region
Transmission Queue

NSLDS.FROM.EAI.PELL Input Queue for Other
tests required

Local Queue

NSLDS.PELL.PROCESS Process for pilot Process definition
NSLDS.INIT Initiation Queue for

pilot
Local Queue

NPP1 Queue Manager for
Production LPAR
(production region)

Queue Manager

NPP1.DEAD.QUEUE Dead Letter Queue Local Queue
NPP1.SU35E16 Sender Channel Sender Channel
SU35E16.NPP1 Receiver Channel Receiver Channel
SU35E16 Transmission Queue for

Test region
Transmission Queue

NPP1.SU35E17 Sender Channel Sender Channel
SU35E17.NPP1 Receiver Channel Receiver Channel
SU35E17 Transmission Queue for

Test region
Transmission Queue

NSLDS.FROM.EAI.PELL Input Queue for Other
tests required

Local Queue

NSLDS.PELL.PROCESS Process for pilot Process definition
CPS.BATCH.INIT Initiation Queue for pilot Local Queue
CPS.TEST.BATCH.QUEUE Input Queue for pilot Local Queue
CPS.BATCH.PROCESS Process for Pilot Process
NSLDS.BATCH.INIT Initiation Queue for pilot Local Queue
NSLDS.FROM.EAI.PELL Input queue for Pilot Local Queue

09/28/01 54 – 54.1.3 58

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION 4: EXECUTION ARCHITECTURE COMPONENTS

MQ ObjectName Description Object Type
NSLDS.INIT Initiation Queue for

pilot
Local Queue

4.1.3.3 MQSeries for DLSS on Open VMS

The MQSeries objects defined on the DLSS system are contained in the table below.

MQSeries Queue Manager(s) and objects:
MQ ObjectName Description Object Type
CRDEV2 Queue Manager for Test

Environment
Queue Manager

CRDEV2.DEAD.LETTER.QUEUE Dead Letter Queue Local Queue
CRDEV2.SU35E16 Sender Channel Sender Channel
SU35E16.CRDEV2 Receiver Channel Receiver Channel
SU35E16 Transmission Queue for

Test Environment
Transmission Queue

CRDEV2.SU35E17 Sender Channel Sender Channel
SU35E17.CRDEV2 Receiver Channel Receiver Channel
SU35E17 Transmission Queue for

Test Environment
Transmission Queue

DLSS.LOAN.PROCESS Process definition for
pilot

Process

DLSS.INIT Initiation Queue for
pilot

Local Queue

DLSS.FROM.EAI.LOAN Input Queue for pilot Local Queue

4.1.3.4 MQSeries for eCBS on Solaris
The MQSeries objects defined on the eCBS system are contained in the table below. WebSphere
Application Server and eCBS are on the same machine. eCBS and WebSphere Application Server uses
the same queue manager (SU35E5) and reuses any MQSeries objects that have already been defined in
Table 4.1.1.1.

MQSeries Queue Manager(s) and objects:
MQ ObjectName Description Object Type
ECBS.FROM.EAI.FISAP.BATCH Input Queue for ECBS

pilot
Local Queue

ECBS.FROM.EAI.FISAP.REAL Input Queue for ECBS
pilot

Local Queue

09/28/01 54 – 54.1.3 59

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION 4: EXECUTION ARCHITECTURE COMPONENTS

4.1.3.5 MQSeries for FMS on HP-UX
The MQSeries objects defined on the FMS system are contained in the table below.

MQSeries Queue Manager(s) and objects:
MQ ObjectName Description Object Type
HPL6 Queue Manager for

Development and Test
Environment

Queue Manager

HPL6.DEAD.LETTER.QUEUE Dead Letter Queue Local Queue
HPL6.SU35E16 Sender Channel Sender Channel
SU35E16.HPL6 Receiver Channel Receiver Channel
SU35E16 Transmission Queue for

Development
Environment

Transmission Queue

HPL6.SU35E17 Sender Channel Sender Channel
SU35E17. HPL6 Receiver Channel Receiver Channel
SU35E17 Transmission Queue for

Test Environment
Transmission Queue

FMS.REAL.PROCESS Process definition for
pilot

Process

FMS.BATCH.PROCESS Process definition for
pilot

Process

FMS.INIT Initiation Queue for
pilot

Local Queue

FMS.FROM.EAI.RFMS.REAL Input Queue for pilot Local Queue
FMS.FROM.EAI.RFMS.BATCH Input Queue for pilot Local Queue
SYSTEM.ADMIN.SVRCONN Server Connection

Channel for Remote
Administration

Server Connection
Channel

4.1.3.6 MQSeries for LO System - eMPN on HP-UX
The MQSeries objects defined on the LO System - eMPN system are contained in the table below.

MQSeries Queue Manager(s) and objects:

MQ ObjectName Description Object Type
HPL12 Queue Manager for

Development and Test
Environment

Queue Manager

HPL12.DEAD.LETTER.QUEUE Dead Letter Queue Local Queue
HPL12.SU35E16 Sender Channel Sender Channel
SU35E16.HPL12 Receiver Channel Receiver Channel

09/28/01 54 – 54.1.3 60

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION 4: EXECUTION ARCHITECTURE COMPONENTS

MQ ObjectName Description Object Type
SU35E16 Transmission Queue for

Development
Environment

Transmission Queue

HPL12.SU35E17 Sender Channel Sender Channel
SU35E17. HPL12 Receiver Channel Receiver Channel
SU35E17 Transmission Queue for

Test Environment
Transmission Queue

LOWEB.EMPN.PROCESS Process definition for
pilot

Process

LOWEB.EMPN.INIT Initiation Queue for
pilot

Local Queue

LOWEB.FROM.EAI.EMPN Input Queue for pilot Local Queue
SYSTEM.ADMIN.SVRCONN Server Connection

Channel for Remote
Administration

Server Connection
Channel

4.1.3.7 MQSeries for LO System - P-Note Imaging on Windows NT
The MQSeries objects defined on the LO System - P-Note Imaging system are contained in the table
below.

MQSeries Queue Manager(s) and objects:
MQ ObjectName Description Object Type
HPL12 Queue Manager for

Development and Test
Environment

Queue Manager

HPL12.DEAD.LETTER.QUEUE Dead Letter Queue Local Queue
HPL12.SU35E16 Sender Channel Sender Channel
SU35E16.HPL12 Receiver Channel Receiver Channel
SU35E16 Transmission Queue for

Development
Environment

Transmission Queue

HPL12.SU35E17 Sender Channel Sender Channel
SU35E17. HPL12 Receiver Channel Receiver Channel
SU35E17 Transmission Queue for

Test Environment
Transmission Queue

LOWEB. PNOTE.PROCESS Process definition for
pilot

Process

LOWEB.PNOTE.INIT Initiation Queue for
pilot

Local Queue

LOWEB.FROM.EAI.PNOTE Input Queue for pilot Local Queue
SYSTEM.ADMIN.SVRCONN Server Connection

Channel for Remote
Administration

Server Connection
Channel

09/28/01 54 – 54.1.3 61

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION 4: EXECUTION ARCHITECTURE COMPONENTS

4.1.3.8 MQSeries for PEPS on HP-UX
The MQSeries objects defined on the PEPS system are contained in the table below.

MQSeries Queue Manager(s) and objects:
MQ ObjectName Description Object Type
PEPSK570 Queue Manager for Test

Environment
Queue Manager

PEPSK570.DEAD.LETTER.QUEUE Dead Letter Queue Local Queue
PEPSK570.SU35E16 Sender Channel Sender Channel
SU35E16. PEPSK570 Receiver Channel Receiver Channel
SU35E16 Transmission Queue for

Test Environment
Transmission Queue

PEPSK570.SU35E17 Sender Channel Sender Channel
SU35E17. PEPSK570 Receiver Channel Receiver Channel
SU35E17 Transmission Queue for

Test Environment
Transmission Queue

PEPS.SCHOOL.PROCESS Process definition for
pilot

Process

PEPS.INIT Initiation Queue for
pilot

Local Queue

PEPS.FROM.EAI.GETSCHOOL Input Queue for pilot Local Queue

5 EXECUTION ARCHITECTURE COMPONENTS
The purpose of this section is to define the execution components for the EAI Core Architecture. The
EAI Core Architecture was designed and built to validate the EAI core infrastructure design,
development, and validation of sample functionality. For each Release 1 and 2 legacy system, there are
no specific SFA EAI application execution components defined. As SFA develops EAI applications the
application development teams will utilize the services and components developed to define and
implement the EAI Core architecture services and interfaces. The developed MQ Adapters for each
system will serve as reusable components that can be utilized as is or modified to support each
application’s EAI requirements.

The following sections defines in detail the execution components developed and provided by the EAI
Core architecture to serve as a foundation for designing and developing applications to use the SFA EAI
infrastructure.

5.1 MQSERIES MESSAGING CAPABILITIES
This section describes the standard MQSeries Messaging architecture components utilized for Release 1
and 2 of the Enterprise Application Integration Core Architecture. These components are being used as
services provided by MQSeries Messaging.

09/28/01 54 – 54.1.3 62

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION 4: EXECUTION ARCHITECTURE COMPONENTS

5.1.1 Application Programs and Messaging
The MQSeries products enable programs to communicate with each other across a network of unlike
components, such as processors, subsystems, operating systems, languages and communication protocols.

MQSeries programs use a consistent application program interface (API) across all platforms, enabling
application programs to communicate with each other using messages and queues. This form of
communication is referred to as asynchronous messaging. As implemented by MQSeries, it provides
assured, once-only delivery of messages. Using MQSeries means that application developers can
decouple application programs, so that the program sending a message can continue processing without
having to wait for a reply from the receiver. If the receiver, or the communication channel to it, is
temporarily unavailable, the message can be forwarded at a later time. MQSeries also provides
mechanisms for generating acknowledgments of messages received.

The programs that utilize MQSeries software can be running on different computers, on different
operating systems, and at different locations. The applications are written using a common programming
interface known as the Message Queue Interface (MQI), so that applications developed on one platform
can be transferred to another.

MQSeries messaging products make it straightforward for applications to exchange information between
35 platforms. The MQSeries products take care of network interfaces, assure delivery of messages, deal
with communications protocols, and handle recovery after system problems. Message queues in a cluster
can automatically configure and define their resources with one another, balance work amongst
themselves, and provide 'hot standby' in case of failure.

Programs communicate using the MQSeries API, an easy-to-use, high-level program interface that shields
programmers from the complexities of different operating systems and underlying networks. Developers
can focus on the business logic, while MQSeries manages the connections to the computer systems.

5.1.2 Queue Managers
In MQSeries, queue objects are managed by a component called a queue manager. The queue manager
provides messaging services for the applications and processes. The queue manager ensures that messages
are put on the correct queue or that the messages are routed to another queue manager.

Before applications can send any messages, a queue manager must be created along with queue objects.
MQSeries for Windows NT provides the MQSeries Explorer GUI utility to help create queue managers
and define other MQSeries objects needed for applications.

5.1.3 Connecting an Application to a Queue Manager
Any MQSeries application must make a successful connection to a queue manager before it can make any
other MQI calls. When an application successfully makes the connection, the queue manager returns a
connection handle. This is an identifier that the application must specify each time it issues an MQI call.
An application can connect to only one queue manager at a time (known as its local queue manager), so
only one connection handle is valid (for that particular application) at a time. When the application has
connected to a queue manager, all the MQI calls it issues are processed by that queue manager until it
issues another MQI call to disconnect from that queue manager.

5.1.4 Opening a Queue

09/28/01 54 – 54.1.3 63

Before an application can use a queue for messaging, it must open the queue. If putting a message on a
queue, the application must open the queue for output. Similarly, if getting a message from a queue, the

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION 4: EXECUTION ARCHITECTURE COMPONENTS

application must open the queue for input or browse. An application can specify that a queue be opened
for both getting and putting, if required. The queue manager returns an object handle if the open request is
successful. The application specifies this handle, together with the connection handle, when it issues a
put or a get call. This ensures that the request is carried out on the correct queue.

5.1.5 Putting and Getting Messages
When the open request is confirmed, an application can put a message on the queue. To do this, it uses
another MQI call on which a number of parameters and data structures are specified. These define all the
information about the message being put, including but not limited to the parameters of a message type,
format, persistence, priority, correlation id, message id, reply to queue and reply to queue manager. The
message data (that is, the application-specific contents of the message the application is sending) is
defined in a buffer, which is specified in the MQI call. When the queue manager processes the call, it
adds a message descriptor, which contains information that is needed to ensure the message can be
delivered properly. The message descriptor is in a format defined by MQSeries; the message data is
defined by the application (this is what is put into the message data buffer in the application code).

The program that gets the messages from the queue must first open the queue for getting messages. It
must then issue another MQI call to get the message from the queue. On this call, there is an option to
specify which message to get or to retrieve in FIFO or an order of priority.

5.1.6 Transactional Integrity
MQSeries supports transactional messaging, which means that operations on messages can be grouped
into ‘Units Of Work’ (UOW). A unit of work is either committed in its entirety, or backed-out, so that
it’s as if none of the operations took place. This means that data is always in a consistent state.
Transactional messaging is done in each adapter by using the MQSeries function call MQCMIT and
MQBACK.

The MQCMIT call indicates to the queue manager that the application
has reached a syncpoint, and all of the message gets and puts that
have occurred since the last syncpoint are to be made permanent.
Messages put as part of a unit of work are made available to other
applications; messages retrieved as part of a unit of work are
deleted.

The MQBACK call indicates to the queue manager all of the message gets
and puts that have occurred since the last syncpoint are to be backed
out. Messages put as part of a unit of work are deleted; messages
retrieved as part of a unit of work are reinstated on the queue.

5.1.7 Security
Security is an important aspect for a distributed system and MQSeries provides a flexible security
framework that allows the appropriate security architecture to be implemented to meet SFA’s enterprise
requirements. There are several aspects to the MQSeries security model. A detailed security model and
its implementation are outside the scope of the Release 1 EAI Core architecture. Security should be
addressed on an enterprise level. At a minimum, each SFA application that wants to connect to the EAI
Bus should perform a detailed security analysis of their message data and interfaces during the design
stage to ensure an adequate implementation and prevention of unauthorized access.

09/28/01 54 – 54.1.3 64

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION 4: EXECUTION ARCHITECTURE COMPONENTS

5.1.8 Triggering
The asynchronous nature of message queuing may mean that applications are idle for periods of time
when there are no messages to process. To avoid having idle processes consume system resources while
there is no work to do, MQSeries provides a mechanism to ‘trigger’ applications to start when certain
conditions are met. Triggering works by defining one or more specific conditions for an application’s
queue, which, when met, will cause the queue manager to send a trigger message to a MQSeries queue
called an initiation queue. The trigger message is processed by a special application called a trigger
monitor, which reads the trigger message from the initiation queue and uses the information in the
message to help decide which application to start to process the messages on the application’s queue. By
using a trigger monitor there can be a single process that initiates many application processes to handle
messages arriving on many different queues, as required.

5.2 MQSERIES INTEGRATOR CAPABILITIES
This section describes the standard MQSeries Integrator architecture components utilized for the Release
1 and 2 Enterprise Application Integration Core Architecture. These components are being used as
services provided by MQSeries Integrator. The MQSI product includes multiple IBM Primitive node
types that can be used to build a message flow. MQSI provides the capabilities to implement business
logic, data transformation and message routing in a centralized broker repository. The SFA EAI Bus
includes redundant MQSI servers that process all MQ messages and perform transformation and routing
as defined in each message flow. Message flows can be specific to an application or can be shared among
applications based on the content of the message data.

MQSeries Integrator is a powerful message broker that reacts to business events, using MQSeries to
deliver messages. It simplifies the complexity of connections between applications by establishing a bus
through which messages pass and where operations on messages can be performed, and enterprise-
defined rules can be intelligently applied. Operations on messages include, but are not limited to filtering,
transformation, routing and data extraction from databases. Reformatting invoked dynamically by the
run-time engine, supports parsing and reformatting messages. Message formats can be self-defining
using XML, defined using an IBM-provided format repository, or, if desired, by using third-party
message dictionaries.

MQSeries Integrator (MQSI) is designed on the premise that, instead of direct connection between
systems, a new connection point is established in the middle of the “map” -- a bus -- and each system has
a single connection to the bus. The maze of connections dramatically simplifies to a star diagram, and the
bus at the center of the star becomes the focus for enterprise intelligence. This “hub” at SFA is
considered to be the EAI Bus servers, also often referred to as a “message broker”. All messages pass
through the EAI Bus servers, which are architected to handle large volumes of message traffic. This is
possible because the EAI Bus servers are not a single OS process but a collection of processes on multiple
machines, operating together under the concept of a broker domain, each broker of which consists of one
or more multithreaded OS processes acting as integration engines. This multi-broker, multi-process,
multi-threaded architecture enables the EAI Bus servers to distribute work, tolerate a failing broker,
restart failing components automatically, facilitate planned outages, and scale to the needs of the
enterprise, either vertically or horizontally.

The EAI Bus servers hold the core of the enterprise's intelligence, in that the servers serve as the
repository of information that is used to orchestrate the integration of pillar applications on different
platforms. The knowledge the servers can maintain are of two types: knowledge of the business, including
information and rules by which the business is run, and knowledge of the applications in the enterprise

09/28/01 54 – 54.1.3 65

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION 4: EXECUTION ARCHITECTURE COMPONENTS

systems. This knowledge allows the EAI Bus servers to take action, based on the type of messages that
come in.

Message broker(s) that comprise the EAI Bus servers are associated with MQSeries queue managers,
which are responsible for overseeing message traffic going into and out of the message broker itself. The
queue managers are responsible for message integrity and transactional control, including message
logging, rollback and/or redirection in the event of a failure. Because the EAI Bus servers have been
configured for MQSeries Clustering the scalability and load-balancing capabilities inherit to clustering
can be taken advantage of.

Knowledge of the business and applications enables the core functions of transformation and routing.
Transformation between interfaces is nothing new; most enterprises have applications that have
developed over the years, on different systems, using different programming languages and different
methods of communication, that have interfaces to one another. Standard message queuing technology
can bridge differences like these, but message queues (or the applications that use them) have to be
explicitly told about the location and characteristics of message destinations. MQSeries Integrator
changes all that. Using MQSI this knowledge about each application, and its relationship to other
applications, is stored just once in the bus, which uses intelligent routing to decide where each message is
to go, and in what format it is to go there. For instance, personal names are held in many forms in
different applications. Surname first or last, with or without middle initials, upper or lower case: these are
just some of the permutations. Another example is data augmentation, or enrichment; perhaps an input
message contains an account number, but not a name. Using this, business logic in the bus can issue an
SQL query against a customer database using the account number, obtain the customer’s name, and then
forward that to other applications in the appropriate format.

These examples illustrate how the EAI Bus servers, supplied with the information definition of each
application, can supply data in the right format to any receiving application, without the sending
application needing to be modified in any way. Knowledge of business rules and information
requirements enables intelligent routing of information to where it's needed. Intelligent routing is another
capability of the EAI Bus Broker servers. Intelligent routing encapsulates business knowledge of how
information should be distributed between message sending and receiving applications throughout the
enterprise. This knowledge is stored in the EAI Bus Servers as a set of rules that are applied to each
message that passes through the EAI Bus servers. For example, all loan applications over a certain
amount may be routed to a person who must authorize them. Messages can be sent on or distributed,
according to criteria applied to the content of fields within the message data or attributes of the message
contained in the one or more headers that may be added to the front of the messages.

The advantage of this capability is that a far more flexible approach can be taken to the distribution of
information. It is here that the organization can really see the application of enterprise intelligence in the
information systems -- a business manager with a concept for an enhancement to an automated process
has only to articulate it in terms of a few business rules. Then the rules can simply be stored in the EAI
Bus Servers, rather than having to laboriously modify the appropriate applications, or maintain that
information at many points in the EAI infrastructure.

5.3 EXPORTING MESSAGE FLOWS BETWEEN DEVELOPMENT WORKSTATIONS AND MQSI BUILD-
TIME SERVER

5.3.1 Exporting Message Flows
Exporting message flows and message sets is a two-part operation.
09/28/01 54 – 54.1.3 66

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION 4: EXECUTION ARCHITECTURE COMPONENTS

1) From the MQSI control center, choose File->Export and chose a file name and path to export your

workspace. This will contain message flows and topology

2) From the command line, enter:

mqsimrmimpexp -e MQSIMRDB mqsiuid mqsipw <Message Set Name> <msgsetname>.mrp

• MQSIMRDB is the MRM ODBC database alias;

• mqsiuid is the userid for that DB;

• mqsipwd is the password for that DB;

• <Message Set Name> is the message set name;

• <msgsetname>.mrp is the name of the export file to be created. This file will contain the named
message set.

5.3.2 Importing Message Flows
Importing message flows and message sets is a four-part operation.

1) Stop the configuration manager by issuing the following command from a command prompt:

mqsistop configmgr

2) From the command prompt, enter:

mqsimrmimpexp -i MQSIMRDB mqsiuid mqsipw <msgsetname>.mrp

• MQSIMRDB is the MRM ODBC database alias;

• mqsiuid is the userid for that DB;

• mqsipwd is the password for that DB;

• <msgsetname>.mrp is the name of the message set file to be imported

3) Restart the configuration manager by issuing the following from a command prompt: mqsistart
configmgr

4) From the MQSI control center, chose File->Import and select the workspace file which you exported
previously. When prompted, select only message flows to be imported.

Restart the control center and the flows and message sets will be present.

5.4 DEPLOYING MQSI CONFIGURATION DATA FROM THE BUILD-TIME SERVER TO THE RUN-
TIME SERVER

Migration of message flows and message sets to the brokers is called deployment. When requesting a
deployment of any type of configuration data, the Configuration Manager copies the relevant
configuration data from the shared configuration and transmits it to the relevant brokers. When the
deployment is successful, the brokers are able to act in accordance with the newly deployed data.

The following types of configuration data need to be deployed before being used in the broker domain:

• Assignments data: Execution groups to brokers; message flows to execution groups; and message sets

to brokers.

09/28/01 54 – 54.1.3 67

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION 4: EXECUTION ARCHITECTURE COMPONENTS

• Topology data: Broker and collective data for the broker domain. Collectives are related to publish

and subscribe and are not applicable for SFA at this time.

5.4.1 Three types of deployment
Each type of configuration data may be deployed separately or all data may be deployed at once. For each
of these types of configuration data, the following can be requested:
1) Complete deployment

2) Delta deployment

3) Forced deployment (This type of deployment is only valid when all configuration data of all types is
being deployed)

5.4.1.1 Complete deployment
A complete deployment:
1) Deletes all configuration data of that type that is currently deployed on the target brokers

2) Creates new configuration data from the shared configuration. For example, if requesting a complete
deployment of topics data, the Configuration Manager deploys instructions to all brokers to delete all
currently deployed topics data and create a new set of topics data from those in the shared
configuration.

This type of deployment can take extended periods of time depending on the topology and number of
resources in the broker domain and delta deployment may be used most of the time.

5.4.1.2 Delta deployment
When requesting a delta deployment, the Configuration Manager compares the configuration data of that
type that is currently deployed on the target brokers with the shared configuration, and deploys only the
differences between the two versions. Therefore, the delta deployment is better for performance,
especially when there is a large amount of configuration data in the shared configuration.

5.4.1.3 Forced deployment
The forced deployment, which overrides any outstanding deployment request, is used typically to correct
error situations. Therefore, to maintain consistency of the configuration data throughout the broker
domain, a forced deployment is allowed only when deploying all types of configuration data. A forced
deployment is always a complete deployment.

5.4.2 Stages of Deployment
Deployment of configuration data occurs in two stages.

5.4.2.1 Stage One of Deployment
During stage one of deployment, which is synchronous, the Configuration Manager sends a configuration
data stream to the SYSTEM.BROKER.ADMIN.QUEUE of each target broker. When the configuration
data has been sent to all relevant brokers, control is returned to the user. If the first stage is successful,
message BIP1520I is displayed identifying the brokers to whom the data was deployed.

However, if an error is detected during the first stage of deployment, the deployment is abandoned: no
configuration data is sent to any broker, and an appropriate error message is displayed in a Control Center
dialog box.

09/28/01 54 – 54.1.3 68

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION 4: EXECUTION ARCHITECTURE COMPONENTS

5.4.2.2 Stage Two of Deployment
During stage two of the deployment process, which is asynchronous, the target brokers process the
received configuration data and return a response on the Configuration Manager’s
SYSTEM.BROKER.ADMIN.REPLY queue. The Configuration Manager then updates its record of the
deployed configuration. Deployment of data to a target broker might be only partially successful. This is
because the unit of deployment on a broker is the execution group: the deployment of one execution
group to a broker might succeed, but the deployment of another to the same broker might fail. A unit of
deployment is transactional, however, so either all changes are made to a given execution group or no
change is made.

For deployment purposes, topology data is considered to belong to a separate unit of deployment, so
either all changes are made to topology, or no change is made.

5.4.3 Deploying and Checking Data In and Out
When a deployment of any type of configuration data takes place, the data of that type that has been
checked into the shared configuration by all Control Center users in the broker domain is that which is
deployed to the configuration repository. Data that has not been checked in is not deployed. Note also that
descriptive text that is supplied when defining Control Center resources is not deployed.

If the fact that some data has not been checked in leaves the shared configuration in an inconsistent state,
the deployment is likely to fail. If the Configuration Manager detects an inconsistency, a message is
received indicating that some Control Center resources are not checked in.

To avoid this situation occurring, request a list of all resources in the workspace that have not been
checked in (using the File —> Check In List action) before deploying. The user can also check in all
checked-out configuration data in your workspace using the File —> Save to Shared action. Of course, if
multiple users are creating shared configuration data, that activity must cease while a deployment takes
place, and all users must check in any checked-out resources before the deployment is requested.

5.4.4 Verifying Successful Deployment
To determine whether stage two of a deployment has succeeded refresh the Log view: click the green
refresh button on the taskbar, or select View —> Refresh. It might take a while for the response to arrive.
The refreshed Log view displays a group of messages for each broker to which configuration data has
been deployed. Typical messages are:

Message Meaning
BIP2056 Indicates that a deployment was completely successful for the broker.
BIP2086 Indicates that a deployment was partially successful for the broker.
BIP2087 Indicates that a deployment was completely unsuccessful for the broker.

If a deployment fails completely or partially succeeds, and message BIP4046 also appears in the Log
view the broker in question is out of step with the rest of the broker domain. The user must correct the
problem that caused the failure and deploy again to restore consistency of data throughout the broker
domain.

For deployment purposes, data is considered to belong to a separate unit of deployment, so either all
changes are made to the topology, or no change is made.

09/28/01 54 – 54.1.3 69

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION 4: EXECUTION ARCHITECTURE COMPONENTS

5.4.5 SFA EAI Release 1 and 2 Core Specific Deployment Details
The EAI bus currently includes the MQSI brokers in the NT SFANT006 server and the Sun SU35E16 and
SU35E17 servers. MQSeries channels are defined between the configuration manager and the brokers to
enable resource deployment.

5.4.5.1 Deployment Cookbook

Step 1: Define MQSeries resources
Create all required queues on each broker queue manager

Step 2: Define any database resources required of the flow
Create any required databases, tables or data required by the flow. Ensure these databases are ODBC
enabled.

Step 3: Assign Resources
In order to deploy new message flows, all that need be done is to assign them to execution groups and
assign applicable message sets to their respective brokers. This is done using the MQSI Control Center.
Selecting the assignments tab will display a three-paned interface where these may be assigned. In order
to assign message flows, the execution group must be checked out. In order to assign message sets, the
broker must be checked out. To assign a message flow, simply click and drag it to the target execution
group. To assign a message set, simply click and drag it to the target broker. When complete be sure to
check in all brokers and execution groups. Ensure that corresponding message sets are assigned at the
same time as message flows which require them. MQSI will neither reject an assignment nor a
deployment of a message flow for which a required message set has not been assigned, instead a runtime
error will be generated.

Step 4: Initiate Deployment
Once resources have been assigned, begin deployment by selecting File->Deploy->(type) from the MQSI
Control Center, where type is the type of deployment required. To deploy assignments data, the user must
be a member of group mqbrops.

Step 5: Verify Deployment
Once deployment is initiated via the MQSI Control Center, select the Log tab. Continue to refresh the log
display by clicking the green circular arrow icon at the top of the panel. Normally the log will display
entries indicating the success or failure of the deployment, however it is sometimes necessary to view
other sources of information. On the configuration manager and NT broker the Windows NT event log
contains entries which can also provide an indication as to success or failure. On the Sun brokers, the
/var/adm/messages file is where MQSI directs stderr.

It is possible for the deployment of an execution group to time out while the target broker is processing it.
This effectively leaves the status of the execution group in doubt. This status is shown in the Operations
view by the appearance of a yellow question mark over the traffic light status icon. A message in the Log
view confirms the problem. The in-doubt status of the execution group can be resolved only by a
subsequent deployment of all assignments data. (Note that a subsequent delta deployment is automatically
converted to a complete deployment if any execution group is in the “in-doubt” state).

A simple way to verify the successful deployment of a message flow is to view the properties of the
MQSeries queue that is named on the MQInput node. The IPPROCS parameter will indicate the number
09/28/01 54 – 54.1.3 70

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION 4: EXECUTION ARCHITECTURE COMPONENTS

of processes, which have the queue open for input. If this is greater than one the flow is most likely
active.

Step 6: Test the newly deployed flow
Even if a deployment appears to be successful, errors may occur at runtime. Test, and if necessary,
correct the message flow and re-deploy following the same steps outlined above. The actual testing of a
deployed message flow occurs during the system integration and acceptance testing in the pre-production
or staging environment. The staging environment replicates the behavior and functionality of the
production system to validate the integration of the EAI components, i.e. message flows, are interoperable
and compatible with the existing production applications.

5.5 ERROR HANDLING
In MQSeries, errors are handled at the application level, the system level or both. At the application
level, a failure such as the inability of an MQPUT request to put a message to a queue, perhaps caused by
the queue having no available space, would be indicated to the putting application by returning a specific
reason code describing the error. Thus enabling the application to take an appropriate action.

At the system level, instrumentation events can be used to indicate actions whenever the queue manager
detects that a predefined condition (or set of conditions) has occurred. In the previous example, an event
could be raised when the queue manager detects the “Queue Full” condition on the application queue.
Monitoring software can then be configured to take predefined actions when specific events are detected.
Also, the handling of many exception conditions can be automated. For example, undeliverable messages
can be automatically directed to an undeliverable message queue. If a failure occurs when processing a
message causing the message to be rolled back onto the input queue, MQSeries can be configured to
automatically shunt the message to a Dead Letter Queue for exception processing, rather than forcing
each application to write additional code to handle this.

With MQSI V2, sophisticated error and exception handling facilities are available. For example,
Business Logic is represented to the message broker using a concept called a “message flow”. This
concept includes constructs for grouping related actions together and executing them under the control of
a “TryCatch” node, which provides a special handler for exception processing. If an exception is
subsequently thrown by a downstream node, it is caught by this node, which then routes the original
message to its catch terminal, along with an exception list structure describing the nature of the exception.
The message flow can then branch off from that point to attempt error recovery, generate an alert, retry
the process, etc.

During operation the message broker generates exceptions to handle error conditions. These exceptions
are generated and processed by the broker. Errors processed by the broker are written to the standard
input/output logs defined during setup and configuration. The provided error handling capabilities of the
broker can be expanded through the development of application specific error handling programs,
programs written in C, to further expand the existing capabilities of the broker.

5.6 SCALABILITY
Scalability with MQSeries is achieved through several avenues. With MQSeries Integrator, the SFA EAI
Bus servers are not a single OS process but a collection of processes on one or more machines, operating
together under the concept of a broker domain, each broker consists of one or more multithreaded OS
processes acting as integration engines.

09/28/01 54 – 54.1.3 71

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION 4: EXECUTION ARCHITECTURE COMPONENTS

At the individual broker level, these integration engines support thread pooling, with the administrator
controlling the number of threads assigned to individual message flows within the engine. Volume
increases can be accommodated by increasing the number of threads assigned to the pool. There can also
be multiple integration engines (called Execution Groups), each with its own thread pool. This approach
can be used to separate, at the OS process level, message flows that have low latency requirements from
those that do not require the same level responsiveness.

At the broker domain level, scalability is achieved by enabling more than one broker operating on a SFA
EAI Bus Server. For situations where scalability is needed to accommodate increases in message
throughput, MQSeries Integrator will operate fully in a MQSeries Clustering environment. The
environment created for SFA was configured for MQSeries clustering. This means the enterprise can
have any number of individual brokers defined as a cluster, with messages directed to MQSeries queues
within the cluster and being serviced by any broker in the cluster, whether on the same machine or on
separate machines. As volume load increases additional queue managers and brokers can easily be
created and joined to the existing queue managers and brokers to the cluster, without the need to take the
cluster offline. Additionally, this approach offers the benefit of load balancing, as MQSeries will
automatically distribute messages destined for a specific cluster queue to all instances of that queue
within the cluster. This mechanism also provides automatic fail over, as a failing broker will be detected
by the MQSeries workload balancing mechanism, which will stop routing messages to that broker’s
queue’s until the broker comes back online and rejoins the cluster.

At the adapter level, scalability is less of a consideration, as any one adapter processes a fraction of the
overall message load. However, in the event that the message volume to a single instance of an adapter
causes performance degradation within the adapter, it is possible to run additional instances of the
adapter, serving the same MQSeries queue and communicating with the same application. Typically, the
adapters will match or exceed the processing speed of the application.

All these capabilities together mean this multi-broker, multi-process, multi-threaded architecture will
enable distribution of work, tolerate a failing broker, restart failing components automatically, facilitate
planned outages, and scale to the needs of the enterprise, either vertically or horizontally.

The SFA EAI Bus provides for redundant MQSI servers, and a MQSeries Messaging cluster
implementation. Additional servers can be added to the cluster to support increases in message volume as
well as adding additional server(s) to the bus to accommodate increases in message flow processing. The
determination of deploying additional servers is based on the transaction volumes as SFA EAI
applications are developed and deployed onto the EAI Bus. The EAI Core Architecture provides the
foundation to accommodate growth and increases in utilization as the application EAI requirements are
defined by the application development teams.

5.7 REDUNDANCY
As part of the SFA Release 1 and 2 Core Architecture implementation MQSeries clustering between the
WebSphere Application servers and the EAI Bus servers has been implemented, which allows MQSeries
to support part of the redundancy needed between these two systems. To fully accomplish the ability to
handle a failure of one of the EAI Bus servers, the same MQSI execution components must be installed
on each server and would require the use of a shared DB2 database. The existing infrastructure at the
VDC does not provide the capability to share a single DB2 database repository for the EAI Bus.
Redundancy has been implemented in Release 1 and 2 of the EAI Core architecture by maintaining
parallel DB2 database copies of each Broker domain on both EAI Run-time servers in the EAI Bus.

09/28/01 54 – 54.1.3 72

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION 4: EXECUTION ARCHITECTURE COMPONENTS

5.8 LOAD BALANCING
MQSeries Clustering can be used to achieve load balancing of messages across queue managers, and, by
extension, message brokers on the EAI Bus servers. With clustering, the system can have any number of
individual queue managers (or brokers) defined in a cluster, with messages directed to MQSeries queues
within the cluster. These queues will be serviced by any queue manager (or broker) in the cluster, that
could exist on the same EAI Bus server or on separate machines within the same cluster. As volume
increases additional queue managers (and brokers) can easily be joined to the cluster, without the need to
take the cluster, or any queue managers that are part of it, offline. Load balancing is achieved, by default,
by MQSeries automatically distributing message traffic destined for a specific cluster queue to all
instances of that queue within the cluster, in a round-robin fashion. Although available, the EAI Core
Architecture Release 1 and 2 has not implemented any custom cluster workload exit to support any other
types of load balancing capabilities.

09/28/01 54 – 54.1.3 73

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION 5: DEVELOPMENT ARCHITECTURE

6 DEVELOPMENT ARCHITECTURE

6.1 OVERVIEW
This section describes the MQSeries Integrator (MQSI) components utilized for the Release 1 and 2
Enterprise Application Integration Core Architecture.

6.2 DESCRIPTION
The MQSI Development Architecture for SFA consists of multiple hardware and software components.
Within this development environment, there is am MQSI NT development server that houses the
Configuration Database and a broker for validating developed message flows. A server used for the MQSI
configuration management process and three workstations used for the MQSI Control Centers.

The MQSI runtime environment consists of the MQSI brokers, which are used to host and control the
EAI Core pilot message flows. The brokers enable an execution environment to support the component
and/or a system testing.

The MQSI configuration manager serves three main functions:
• It maintains configuration details in the configuration repository. This is a set of database tables that

provide a central record of the broker domain components.

• It manages the initialization and deployment of brokers and message processing operations in
response to actions initiated through the Control Center. It communicates with other components in
the broker domain using MQSeries transport services.

• It checks the authority of defined user IDs to initiate those actions.

The MQSI control center has two main functions:
• The creation, manipulation, and deployment of configuration data for a broker domain

• The monitoring and management of the operational state of the same broker domain

For each Release 1 and 2 legacy systems, a development environment has been defined to develop the
custom adapters. Some development systems are not located within the VDC. The following are the
locations of each of the development systems.

• bTrade: The development system (HPDEV1) that was used for the core development and component

testing is located at bTrade in Dallas. The integration testing was performed on a HP server at the
VDC.

•

•

CPS: The system has a production LPAR (CPSP) that contains the development TSO and CICS
subsystems. This system is located at the VDC.

• DLSS: Their development system (CRDEV2) is located in Rockville, MD.

eCBS: The development (SU35E5) that was used for the core development and component testing is
located at the VDC.

• FMS: The development system (HPL6/HPL7) that was used for the core development and component
testing is located at the VDC.

09/28/01 54 – 54.1.3 74

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION 5: DEVELOPMENT ARCHITECTURE

• LO System - eMPN: The development system (HPL12) that was used for the core development and

component testing is located at the VDC.

• LO System - P-Note Imaging: The development system (HPL12) that was used for the core
development and component testing is located at the VDC.

• NSLDS: The system has a test LPAR (NSLT) that contains the development TSO and CICS
subsystems. This system is located at the VDC.

• PEPS: The development system (PEPSK570) that was used for the testing is located at the VDC.
The system was commonly referred to as the pseudo-PEPS system.

• WAS: The WebSphere development server is a Sun E3500 and is located at the VDC

6.3 OPERATING SYSTEMS
Within the SFA Release 1 and 2 EAI Bus Core Development Architecture, there are multiple operating
systems involved. Each of the three MQSI software components is spread across different systems to
support the development environment for SFA. The MQSI Broker components are installed and
configured on two Sun Solaris systems and the NT MQSI build time server. The MQSI Configuration
Manager component and a broker are installed and configured on a single Windows NT system. The
MQSI Control Centers are installed and configured on three Windows NT workstations.

6.4 DEVELOPMENT PROCESS
There are minimum SFA specific development processes that were used to develop the Release 1 and 2
EAI Core Architecture components. Some systems required custom adapters to be built. The systems
requiring custom built adapters and the languages used are listed below.

bTrade: Java
CPS: COBOL
DLSS: C
eCBS: Java
FMS: Java
LO System - eMPN: Java
LO System - P-Note Imaging: Java
NSLDS: COBOL and Cool:Gen MQ Components
PEPS: Java

The NSLDS online system required the use of the Cool:Gen tool to generate all components involved in
accessing the existing NSLDS CICS transactions. The pre-requisites for designing, developing and
deploying Cool:Gen components are based on the development and production hardware and system
configurations.

6.5 MQSI DEVELOPMENT ENVIRONMENT
This section provides an overview of the development and production environments for MQSI message
flow development and testing and operation. These are only recommendations and are not a substitute for
a formal planning and sizing exercise in which requirements are accurately determined.

For production use, it is recommended that the components of MQSI V2 be allocated over multiple
machines with the following purposes:

09/28/01 54 – 54.1.3 75

• One or more machines to support Control Center usage.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION 5: DEVELOPMENT ARCHITECTURE

• One machine to support the Configuration Manager. This may also include one Control Center.

• One or more machines to support brokers. By following this organization the brokers can run in a
shielded environment as messages are processed. It is important that this processing proceeds without
competition for resources from other processes in order to ensure the smooth flow of messages
through the enterprise.

A recommended machine specification for the Control Center is a fast uni-processor (Pentium III 500
Mhz processor) with 256MB memory.

A recommended machine specification for the Configuration Manager is a fast uni-processor (Pentium III
500Mhz processor) with 512MB or more of memory.

The specification of the broker machine is more difficult to determine since it requires knowledge of the
expected message rate, the types of node that are to be used and the level of transaction control that is
used. A recommended minimum specification would be a 2 way processor with 512MB memory. The
specification may need to be upgraded if message rates are high or there are many execution groups. In
such cases more detailed planning would be required. To accurately determine resource requirements,
prototyping and benchmarking should be considered. The results produced will then be specific and
tailored to the individual configuration being built.

A message is termed persistent if it survives when MQSeries restarts. This implies that the message must
be logged, or saved, and can be reinstated as part of the recovery procedure. If persistent messages are to
be used then it is recommended that solid state disks or disks with a non volatile fast write cache be used
for the device on which the MQSeries queue log manager is located. If the message rate is less than 50
msgs/second fast input/output will improve message response time only. If the rate is greater than 50
msgs/second then there will be an improvement in message throughput.

A separate disk is also recommended for the MQSeries queue manager queue data.

If business data is accessed from a relational database the database log and data should each be located on
dedicated disks. Consider using a fast device for the database manager log.

In estimating memory requirements for MQSI V2 there are a number of components that need to be
considered. These are:
• The Control Center: Most likely, multiple Control centers will be in use.

• The Configuration Manager: There is one Configuration Manager per MQSI V2 implementation.

• The Broker: There may be multiple brokers and within these multiple execution groups and so
multiple operating system processes.

• MQSeries Queue Manager: There will be one queue manager per broker.

• Relational Database: A DB2 system is required to hold information on behalf of the Configuration
Manager and broker. Additional relational databases may be in use which hold business data.

For the Control Center an initial recommendation is to allow 100MB memory per Control Center. This
would be for development use.

09/28/01 54 – 54.1.3 76

The Configuration Manager and its associated DB2 database and queue manager should have a minimum
of 256MB of memory available in a development environment, but the recommendation is to have more.
The amount of memory required by a broker will depend on the way in which it is configured. A

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION 5: DEVELOPMENT ARCHITECTURE

guideline is to allow 300MB for MQSI V2 and its dependent software (broker-related components only,
no Configuration Manager or Control Center), with an additional 25 MB per running execution group.
This recommendation is based on a MQSeries queue manager configuration consisting of 10 SVRCONN
channels and a small number of queue definitions (less than 25). If the number of MQSeries resources
(channels, queues etc.) to be configured in a system is different you must make an allowance and amend
the amount of memory required accordingly. A SVRCONN channel is a type of MQSeries channel
object. For example, there is a server connection channel called SYSTEM.ADMIN.SVRCONN that
exists on every remote queue manager. This channel is mandatory for every remote queue manager being
administered, without it, remote administration is not possible. When MQSeries is installed on NT, a
server connection channel is automatically created and its function is to allow clients to connect to the
queue manager.

6.6 MQSI CONFIGURATION CONSIDERATIONS
The following section defines those considerations that should be taken into account when developing
MQSI message flows. Consider the following points when building an MQSI V2 configuration:
• It is recommended to use a separate database instance for each of the Configuration Manager and

broker.

• It is not recommended to use the database instances for the Configuration Manager or broker to hold
business data.

• It is recommended to ensure that the database instance for the Configuration Manager is local to the
machine on which the Configuration Manager is installed.

• It is recommended to ensure that the database instance for the broker is local to the machine on which
the broker runs.

• It is recommended to use a local database for business data. If the database is remote from the broker
machine, ensure that there is a fast, preferably dedicated, communications link between the broker
machine and the database manager.

• Carefully examine default settings for nodes and message flows, especially those related to recovery,
to ensure that the values are those required. The transaction mode parameter for a MQInput node will
default to yes, meaning that the message flow will proceed under transaction control.

• When creating and deploying large message flows increase the heap allocation of the Configuration
Manager database. In DB2 this is the APP_CTL_HEAP_SIZE parameter. This value should be
increased as determined through performance testing and tuning of the system. DB2 Administrator
support will be required as part of database administration.

6.7 DEVELOPMENT TOOLS
The development tools that were used to develop the Release 1 and 2 EAI Core Architecture components
included the MQSeries Integrator Control Center, the MQSeries commands and system specific compilers
for the custom adapters. For the NSLDS system, the Cool:Gen tool was used to build the custom adapters
used for the NSLDS CICS transaction environment. Deliverable 54.1.5 EAI Build and Test Report
(Release 1) and 54.1.8 Build and Test Report (Release 2) include the specifics of the custom adapters
built and the tools used to build them.

The MQSeries Integrator Control Center was used to build the Release 1 and 2 EAI Core Architecture
message flows and message sets. The Control Center was installed and configured without any
customization.

09/28/01 54 – 54.1.3 77

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
SECTION 5: DEVELOPMENT ARCHITECTURE

The MQSeries commands and control commands were used to build the EAI Core Architecture Release 1
and 2 MQSeries objects and to start MQSeries specific processes. The command sets are provided as part
of the base MQSeries software product.

6.8 CONFIGURATION MANAGEMENT
The configuration management tool in use for the Release 1 and 2 EAI Core Architecture is the Rational
Clear Case product. All Release 1 and 2 EAI software components have been migrated into the specified
ClearCase directory for the Release 1 and 2 baseline.

Within the MQSeries Integrator software there is a configuration management tool for the MQSI message
flows and message set. There is nothing specific to SFA about this tool. In addition, the message flows
developed for Release 1 and 2 of the EAI Core architecture have been exported and saved in the
ClearCase repository.

09/28/01 54 – 54.1.3 78

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
APPENDIX A: MQSERIES SCRIPTS AND PROGRAMS

APPENDIX A: MQSERIES SCRIPTS AND PROGRAMS
The scripts used to define the MQSeries objects on each system reside in the SFA EAI ClearCase
Repository. The filenames containing the MQSeries commands are as follows:

bTrade
File name File description
.profile Mqm userid .profile
bTrade_MQSeries_Adapter_Arch.vsd VISIO diagram of MQRbTrade
bTrade_Test_Report.doc MQRbTrade test report
CbusConnectorAPI.java Unit test dummy of bTrade class
CDBGenObject.java Unit test dummy of bTrade class
CDBMessage.java Unit test dummy of bTrade class
com.btrade.gnx.connectorapi.jar Version of bTrade connectorAPI
com.btrade.gnx.connectorapi-logger.jar Version of bTrade connectorAPI
hello.class Dummy/test hello world Java app executable
hello.java Dummy/test hello world Java app
Inetd.conf Copy of bTrade box’s inetd.conf file
Mqbtrade Shell script used to run MQRbTrade
MQbTrade.dat Copy of temp interface file to bTrade connectorAPI
MQbTrade.ini Copy of temp interface file to bTrade connectorAPI
MQData.class MQData object executable
MQData.java MQData object source
MQGet.class Test Java app to get messages from a queue

executable
MQGet.java Test Java app to get messages from a queue
MQPut.class Test Java app to put messages to a queue

executable
MQPut.java Test Java app to put messages to a queue
MQRbTrade.class MQRbTrade main executable
MQRbTrade.java MQRbTrade main
Mqrbtrade.mqm Queue configurations for MQRbTrade
mqrbrade.xsd XMLSchema for MQRbTrade
MQRbTrade_ProgOperationGuide.doc MQRbTrade operations guide
MQRbTradeProgDesignSpec.doc MQRbTrade program design spec (old)
MQRequest.class MQRequest object executable
MQRequest.java MQRequest object
MQRProcException.class MQRProcExeception object executable
MQRProcException.java MQRProcExeception object
MQStatus.class MQStatus object executable
MQStatus.java MQStatus object
Services Copy of bTrade box’s services file
temp.Thu Jun 14 08_22_47 EDT 2001.out MQRPEPS Debug output
temp.Thu Jun 14 08_24_50 EDT 2001.out MQRPEPS Debug output
tr1.xml MQRPEPS IVP testcase
tr1debug.out MQRPEPS IVP Debug output

09/28/01 54 – 54.1.3 79

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
APPENDIX A: MQSERIES SCRIPTS AND PROGRAMS

File name File description
tr1xml.out MQRPEPS IVP XML output
tr2.xml MQRPEPS IVP testcase
tr2debug.out MQRPEPS IVP Debug output
tr2xml.out MQRPEPS IVP XML output
XML4J-J-bin.3.1.1.tar.gz XML4J Parser UNIX distribution

CPS
File name File description
MQ Object Definitions
MQADM2.CPT1.DEV-N-
TSO.OBJECTS.DEFS.txt

Objects for CPS development online and batch
environments

MQADM2.CPT1.TST2.OBJECTS.DEFS.txt Objects for CPS test online environments. The
batch is for NSLDS specific.

DLSS
File name File description
VALID_SSNS.DAT Valid social security numbers
366821582.OUT === CI024S1.DAT Sample output file
DLSSMQ.H Include file for c programs
MQLOAN.COM Command procedure
MQGET.C C program – gets message from queue (Batch)
MQPUT.C C program – puts message to queue (Batch)
REALPUT.C C program – puts message to queue (Real-time)
REALGET.C C program – gets message from queue (Real-time)
NOFILE.DAT File containing no output file created message
366821582.IN == CI001S1.INP Sample input file
CI001S1.FDL FDL file used to convert input file to correct format
EAI.TST Script file containing MQ object definitions
START_MQ_BATCH_JOBS.COM Command file to start MQ jobs – started at system

startup time
TRIG_CHANNEL.COM Command file to trigger the sender channel

eCBS

File name File description
ECBSSU35E16Update.tst MQSeries script file to add MQSeries objects

needed by ECBS to SU35E16
ECBSSU35E17Update.tst MQSeries script file to add MQSeries objects

needed by ECBS to SU35E17
ECBSSU35E5Update.tst MQSeries script file to add MQSeries objects

needed by ECBS to SU35E5
MQSIBatchInputData Input test data that will be sent to MQSI to signal

batch type processing for the ECBS adapter.

09/28/01 54 – 54.1.3 80

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
APPENDIX A: MQSERIES SCRIPTS AND PROGRAMS

File name File description
MQSIRealInputData Input test data that will be sent to MQSI to signal

real time processing for the ECBS adapter.

batchTestData.txt Input test data for batch processing by the ECBS
adapter. This is also the data that is sent from
MQSI after MQSIBatchInputData is processed.

realTestData.txt Input test data for real-time processing by the
ECBS adapter. This is also the data that is sent
from MQSI after MQSIRealInputData is processed.

batchOutputData.txt Output test data from inputting contents from
batchTestData.txt to the ECBS adapter

realOutputData.txt Output test data from inputting contents from
realTestData.txt to the ECBS adapter

MQSIErrorMessage.txt Output data that is created by MQSI, when input
from WAS (or the source application) cannot be
processed.

ECBSAdapter Shell script file that will execute the ECBS adapter
MQECBS.java ECBS adapter program
MQECBS.class ECBS adapter executable
MQ ECBS Adapter Interface Internal Design.doc Internal design document for the ECBS adapter

FMS
File name File description
HPL6.tst Runmqsc script file containing queue

configurations for HPL6
FMSSU35E16Update.tst MQSeries script file to add MQSeries objects

needed by FMS to SU35E16
FMSSU35E17Update.tst MQSeries script file to add MQSeries objects

needed by FMS to SU35E17
FMSSU35E5Update.tst MQSeries script file to add MQSeries objects

needed by FMS to SU35E5
hpl6startstop Unix script file to start and stop HPL6 queue

manager
MQSIBatchInputData Input test data that will be sent to MQSI to signal

batch type processing for the FMS adapter.
MQSIRealInputData Input test data that will be sent to MQSI to signal

real time processing for the FMS adapter.
batchTestData.txt Input test data for batch processing by the FMS

adapter. This is also the data that is sent from
MQSI after MQSIBatchInputData is processed.

realTestData.txt Input test data for real-time processing by the FMS
adapter. This is also the data that is sent from
MQSI after MQSIRealInputData is processed.

batchOutputData.txt Output test data from inputting contents from
batchTestData.txt to the FMS adapter

09/28/01 54 – 54.1.3 81

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
APPENDIX A: MQSERIES SCRIPTS AND PROGRAMS

File name File description
realOutputData.txt Output test data from inputting contents from

realTestData.txt to the FMS adapter
MQSIErrorMessage.txt Output data that is created by MQSI, when input

from WAS (or the source) cannot be processed.
FMSAdapter Shell script file that will execute the FMS adapter
MQFMS.java FMS adapter program
MQFMS.class FMS adapter executable
MQ FMS Adapter Interface Internal Design.doc Internal design document for FMS adapter

LO System - eMPN
File name File description
LOWEB.tst Runmqsc script file containing queue

configurations for LOWEB
EMPNSU35E16Update.tst MQSeries script file to add MQSeries objects

needed by EMPN to SU35E16
EMPNSU35E17Update.tst MQSeries script file to add MQSeries objects

needed by EMPN to SU35E17
EMPNSU35E5Update.tst MQSeries script file to add MQSeries objects

needed by EMPN to SU35E5
loweb.startstop Unix script file to start and stop LOWEB queue

manager
MQSIRealInputData Input test data that will be sent to MQSI to signal

real time processing for the EMPN adapter.
realTestData.txt Input test data for real-time processing by the

EMPN adapter. This is also the data that is sent
from MQSI after MQSIRealInputData is processed.

realOutputData.txt Output test data from inputting contents from
realTestData.txt to the EMPN adapter

MQSIErrorMessage.txt Output data that is created by MQSI, when input
from WAS (or the source application) cannot be
processed.

EMPNAdapter Script file that will execute the EMPN adapter
MQEMPN.java EMPN adapter program
MQEMPN.class EMPN adapter executable
MQ EMPN Adapter Interface Internal Design.doc Internal design document for the EMPN adapter

LO System - P-Note Imaging
File name File description
LOWEB.tst Runmqsc script file containing queue

configurations for LOWEB
PNOTESU35E16Update.tst MQSeries script file to add MQSeries objects

needed by PNOTE to SU35E16
PNOTESU35E17Update.tst MQSeries script file to add MQSeries objects

needed by PNOTE to SU35E17
PNOTESU35E5Update.tst MQSeries script file to add MQSeries objects

needed by PNOTE to SU35E5
loweb.startstop Unix script file to start and stop LOWEB queue
09/28/01 54 – 54.1.3 82

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
APPENDIX A: MQSERIES SCRIPTS AND PROGRAMS

File name File description

manager
MQSIRealInputData Input test data that will be sent to MQSI to signal

real time processing for the PNOTE adapter.
realTestData.txt Input test data for real-time processing by the

PNOTE adapter. This is also the data that is sent
from MQSI after MQSIRealInputData is processed.

realOutputData.txt Output test data from inputting contents from
realTestData.txt to the PNOTE adapter

MQSIErrorMessage.txt Output data that is created by MQSI, when input
from WAS (or the source application) cannot be
processed.

PNOTEAdapter Script file that will execute the PNOTE adapter
MQPNOTE.java PNOTE adapter program
MQPNOTE.class PNOTE adapter executable
MQ PNOTE Adapter Interface Internal Design.doc Internal design document for the PNOTE adapter

NSLDS
File name File description
JCL
Cmpjcl02.txt Compile job to compile adapters NSBATCH1 and

NSBATCH2
MQCKTIBA.txt Job to start the OS/390 TSO Batch Trigger Monitor
MQCKTIEN.txt Job to stop the OS/390 TSO Batch Trigger Monitor
Proc
PELL.txt The procedure that executes the adapters and the

NSLDS pilot
Source - Adapters
NSBATCH1.txt Batch adapter to pull messages from MQ and create

NSLDS PELL File.
NSBATCH2.txt Batch adapter to push reply messages to MQ from

the ERROR file from NSLDS.
Batch Trigger Monitor
CKTIBAT2.txt OS/390 TSO Batch Trigger Monitor
CKTIEND.txt Batch Trigger Monitor stop program
MQ Object Definitions
MQADMN1.NTT1.OBJECTS.DEFS.txt Objects for NSLDS development and test

environments

PEPS
File name File description
Employee.class Oracle supplied JDBC IVP executable
Employee.java Oracle supplied JDBC IVP
hello.class Dummy/test hello world Java app executable
hello.java Dummy/test hello world Java app
MQData.class MQData object executable
MQData.java MQData object source
MQGet.class Test Java app to get messages from a queue
09/28/01 54 – 54.1.3 83

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
APPENDIX A: MQSERIES SCRIPTS AND PROGRAMS

File name File description

executable
MQGet.java Test Java app to get messages from a queue
mqpeps Shell script used to run MQRPEPS
MQPut.class Test Java app to put messages to a queue

executable
MQPut.java Test Java app to put messages to a queue
MQRequest.class MQRequest object executable
MQRequest.java MQRequest object
MQRPEPS.class MQRPEPS main executable
MQRPEPS.java MQRPEPS main
mqrpeps.mqm Queue configurations for MQRPEPS
mqrpeps.xsd XMLSchema for MQRPEPS
MQRPEPS_Arch.vsd VISIO diagram of MQRPEPS
MQRPEPS_ProgOperationGuide.doc MQRPEPS operations guide
MQRPEPSProgDesignSpec.doc MQRPEPS program design spec (not started)
MQRProcException.class MQRProcExeception object executable
MQRProcException.java MQRProcExeception object
MQStatus.class MQStatus object executable
MQStatus.java MQStatus object
PEPS_Test_Report.doc MQRPEPS test report
SQLCallList.class SQLCallList object executable
SQLCallList.java SQLCallList object
temp.Thu Jun 14 11_14_10 EDT 2001.out MQRPEPS Debug output
temp.Thu Jun 14 12_51_13 EDT 2001.out MQRPEPS Debug output
temp.Thu Jun 14 16_15_44 EDT 2001.out MQRPEPS Debug output
temp.Thu Jun 14 16_16_11 EDT 2001.out MQRPEPS Debug output
tr1.xml MQRPEPS IVP test case
tr1debug.out MQRPEPS IVP Debug output
tr1xml.out MQRPEPS IVP XML output
tr2.xml MQRPEPS IVP test case
tr2debug.out MQRPEPS IVP Debug output
tr2xml.out MQRPEPS IVP XML output
types.out List of SQL types
XML4J-J-bin.3.1.1.tar.gz XML4J Parser UNIX distribution

WebSphere Server – SU35E5

09/28/01 54 – 54.1.3 84

File name File description
CORE.JAVA MQ Adapter for sending/getting messages to/from

a message queue
E5startstop.txt Script file to start/stop MQSeries on the SU35E5

server
E16startstop.txt Script file to start/stop MQSeries on the SU36E16

server
E17startstop.txt Script file to start/stop MQSeries on the SU35E17

server
Defs.dat Script file containing the MQ Object definitions on

the EAI Bus servers (SU35E16 and SU35E17)

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
APPENDIX B: REFERENCE MATERIAL

APPENDIX B: REFERENCE MATERIAL
For more information on the software and hardware prerequisites for the OS/390, please refer to the
“MQSeries for OS/390 v5.2 Program Directory” and the “MQSeries for OS/390 v5.2 Concepts and
Planning Guide” books on the IBM website:
(url= http://www-4.ibm.com/software/ts/mqseries/library/manualsa/).

For more information on WebSphere Application Server prerequisites, please refer to the “MQSeries for
Windows NT and 2000 Quick Beginnings” book on the IBM website:
(url= http://www-4.ibm.com/software/ts/mqseries/library/manualsa/).

For more information on EAI BUS prerequisites, please refer to the “MQSeries for Windows NT and
2000 Quick Beginnings” book on the IBM website(url= http://www-
4.ibm.com/software/ts/mqseries/library/manualsa/).

For more information on DLSS prerequisites, please refer to the “MQSeries for Compaq (DIGITAL)
OpenVMS System Management” book on the IBM website:
(url= http://www-4.ibm.com/software/ts/mqseries/library/manualsa/).

For more information on PEPS prerequisites, please refer to the “MQSeries for HP-UX v5.2 Quick
Beginnings” book on the IBM website:
(url= http://www-4.ibm.com/software/ts/mqseries/library/manualsa/).

For more information on BTrade prerequisites, please refer to the “MQSeries for HP-UX v5.2 Quick
Beginnings” book on the IBM website:
(url= http://www-4.ibm.com/software/ts/mqseries/library/manualsa/).

For more information on how to customize MQSeries objects for application specific requirements, please
refer to the IBM website:
(url= http://www-4.ibm.com/software/ts/mqseries/library/manualsa/).

For more information on MQSeries application error handling, event monitoring and MQSI error
handling, please refer to the following books:

“MQSeries Application Programming Reference”
“MQSeries Event Monitoring”
“MQSeries Integrator Introduction and Planning”

on the IBM website: (url= http://www-4.ibm.com/software/ts/mqseries/library/manualsa/).

For more information on managing clusters and developing a custom cluster workload exit, please refer to
the “MQSeries Queue Manager Clusters” book on the IBM website:
(url= http://www-4.ibm.com/software/ts/mqseries/library/manualsa/).

For more information on the MQSeries Integrator Control Center and the MQSeries commands and
control commands, please refer to the following books:

“MQSeries Integrator Using the Control Center”
“MQSeries MQSC Command Reference”
“MQSeries Systems Administration”
“MQSeries for Compaq (DIGITAL) OpenVMS System Management”
“MQSeries for OS/390 System Administration Guide”

09/28/01 54 – 54.1.3 85

http://www-4.ibm.com/software/ts/mqseries/library/manualsa/)
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/)
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/)
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/)
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/)
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/)
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/)
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/)
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/)
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/)

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

 EAI TECHNICAL SPECIFICATIONS RELEASE 2
APPENDIX B: REFERENCE MATERIAL

on the IBM website: (url= http://www-4.ibm.com/software/ts/mqseries/library/manualsa/).

For more information on the MQSI configuration manger, please refer to the “MQSeries Integrator Using
the Control Center” book on the IBM website:
(url= http://www-4.ibm.com/software/ts/mqseries/library/manualsa/).

MQSeries Application Programming Guide can be found at:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/ - Latest family books

MQSeries Application Programming Reference can be found at:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/ - Latest family books

MQSeries Application Messaging Interface manual can be found at:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/ - Latest family books

MQSeries Using C++ manual can be found at:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/ - Latest family books

MQSeries Using Java manual can be found at:
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/ - Latest family books

09/28/01 54 – 54.1.3 86

http://www-4.ibm.com/software/ts/mqseries/library/manualsa/)
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/)
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/
http://www-4.ibm.com/software/ts/mqseries/library/manualsa/

	Master Table of Contents
	EXECUTIVE SUMMARY
	PURPOSE
	Approach
	DESCRIPTION OF SECTIONS
	Scope
	Intended Audience
	Business Drivers
	Assumptions

	EAI CORE ARCHITECTURE SYSTEMS AND COMPONENTS OVERVIEW
	INTEGRATION ARCHITECTURE
	Interface Definitions
	Mainframe Legacy Systems
	Central Processing System (CPS) EAI System Overview
	CPS Messaging Components
	MQSeries Provided Adapters
	CPS Custom Built Adapters
	CPS Data Flow and Message Flow Diagrams
	CPS MQSeries Programming Sample Source Code

	National Student Loan Data System (NSLDS) EAI System Overview
	NSLDS Messaging Components
	MQSeries Provided Adapters
	NSLDS MQSeries CICS Adapter

	NSLDS Custom Built Adapters
	NSLDS Data Flow and Message Flow Diagrams
	NSLDS MQSeries Programming Sample Source code
	NSLDS MQSeries OS/390 Trigger Monitor and Custom Cool:Gen Adapters

	Mid-Tier Legacy Systems
	bTrade EAI System Overview
	bTrade Messaging Components
	MQSeries Provided Adapters
	bTrade Custom Built Adapters
	bTrade Data Flow and Message Flow Diagrams
	bTrade MQSeries Programming Sample Source code

	Direct Loan Servicing System (DLSS) EAI System Overview
	DLSS Messaging Components
	MQSeries Provided Adapters
	DLSS Custom Built Adapters
	DLSS Data Flow and Message Flow Diagrams
	DLSS Batch Adapter
	DLSS Real Time Adapter

	DLSS MQSeries Programming Sample Source Code

	Electronic Campus Based System (eCBS) EAI System Overview
	eCBS Messaging Components
	MQSeries Provided Adapters
	eCBS Custom Built Adapters
	eCBS Data Flow and Message Flow Diagrams
	eCBS Batch Adapter

	eCBS MQSeries Programming Sample Source Code

	Financial Management System (FMS) EAI System Overview
	FMS Messaging Components
	MQSeries Provided Adapters
	FMS Custom Built Adapters
	FMS Data Flow and Message Flow Diagrams
	FMS Batch Adapter
	FMS Real-Time Adapter

	FMS MQSeries Programming Sample Source Code

	LO System - Electronic Master Promissory Note (eMPN) EAI System Overview
	LO System - eMPN Messaging Components
	MQSeries Provided Adapters
	LO System - eMPN Custom Built Adapters
	LO System - eMPN Data Flow and Message Flow Diagrams
	LO System – eMPN MQSeries Programming Sample Sour

	LO System - Promissory Note Imaging (P-Note Imaging) EAI System Overview
	LO System - P-Note Imaging Messaging Components
	MQSeries Provided Adapters
	LO System - P-Note Imaging Custom Built Adapters
	LO System - P-Note Imaging Data Flow and Message Flow Diagrams
	LO System - P-Note Imaging MQSeries Programming Sample Source Code

	Post-Secondary Education Participants System (PEPS) EAI System Overview
	PEPS Messaging Components
	MQSeries Provided Adapters
	PEPS Custom Built Adapters
	PEPS Data Flow and Message Flow Diagrams
	PEPS MQSeries Programming Sample Source code

	Websphere Application Server
	EAI WAS Request / Reply Data Flow
	MQ-WebSphere Adapter

	4 SFA EAI ARCHITECTURE CUSTOMIZATION
	4.1 MQSeries Implementation and Configurations for the Non-Legacy Integration Release 1 and 2
	MQSeries for WebSphere on Solaris
	
	The table below contains the MQSeries objects defined on the WebSphere Application Server
	MQSeries Queue Manager(s) and Objects

	EAI Bus Client / Server Configuration and Design
	
	MQSeries Queue Manager(s) and objects

	MQSeries Implementation and Configurations for the Legacy Integration Release 1 and 2
	MQSeries for bTrade on HP-UX
	MQSeries Queue Manager(s) and objects:

	MQSeries for CPS and NSLDS on OS/390
	MQSeries Queue Manager(s) and objects:

	MQSeries for DLSS on Open VMS
	MQSeries Queue Manager(s) and objects:

	MQSeries for eCBS on Solaris
	MQSeries Queue Manager(s) and objects:

	MQSeries for FMS on HP-UX
	MQSeries Queue Manager(s) and objects:

	MQSeries for LO System - eMPN on HP-UX
	MQSeries Queue Manager(s) and objects:

	MQSeries for LO System - P-Note Imaging on Windows NT
	MQSeries Queue Manager(s) and objects:

	MQSeries for PEPS on HP-UX

	EXECUTION ARCHITECTURE COMPONENTS
	MQSeries Messaging Capabilities
	Application Programs and Messaging
	Queue Managers
	Connecting an Application to a Queue Manager
	Opening a Queue
	Putting and Getting Messages
	Transactional Integrity
	Security
	Triggering

	MQSeries Integrator Capabilities
	Exporting Message Flows Between Development Workstations And MQSI Build-Time Server
	Exporting Message Flows
	Importing Message Flows

	Deploying MQSI Configuration Data from the Build-Time Server to the Run-Time Server
	Three types of deployment
	Complete deployment
	Delta deployment
	Forced deployment

	Stages of Deployment
	Stage One of Deployment
	Stage Two of Deployment

	Deploying and Checking Data In and Out
	Verifying Successful Deployment
	SFA EAI Release 1 and 2 Core Specific Deployment Details
	Deployment Cookbook
	Step 1: Define MQSeries resources
	Step 2: Define any database resources required of the flow
	Step 3: Assign Resources
	Step 4: Initiate Deployment
	Step 5: Verify Deployment
	Step 6: Test the newly deployed flow

	Error Handling
	Scalability
	Redundancy
	Load Balancing

	DEVELOPMENT ARCHITECTURE
	Overview
	Description
	Operating Systems
	Development Process
	MQSI Development Environment
	MQSI Configuration Considerations
	Development Tools
	Configuration Management

	APPENDIX A: MQSERIES SCRIPTS AND PROGRAMS
	APPENDIX B: REFERENCE MATERIAL

